Principles Underlying the Use of Multiple Informants’ Reports

Andres De Los Reyes,1 Sarah A. Thomas,1 Kimberly L. Goodman,2 and Shannon M.A. Kundey3

1Comprehensive Assessment and Intervention Program, Department of Psychology, University of Maryland, College Park, Maryland 20742; email: adlr@umd.edu, thomas82@umd.edu
2Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205; email: goodman.kimberly@gmail.com
3Department of Psychology, Hood College, Frederick, Maryland 21701; email: kundey@hood.edu

Keywords
converging operations, diverging operations, compensating operations, informant discrepancies, Operations Triad Model

Abstract
Researchers use multiple informants’ reports to assess and examine behavior. However, informants’ reports commonly disagree. Informants’ reports often disagree in their perceived levels of a behavior (“low” versus “elevated” mood), and examining multiple reports in a single study often results in inconsistent findings. Although researchers often espouse taking a multi-informant assessment approach, they frequently address informant discrepancies using techniques that treat discrepancies as measurement error. Yet, recent work indicates that researchers in a variety of fields often may be unable to justify treating informant discrepancies as measurement error. In this review, the authors advance a framework (Operations Triad Model) outlining general principles for using and interpreting informants’ reports. Using the framework, researchers can test whether or not they can extract meaningful information about behavior from discrepancies among multiple informants’ reports. The authors provide supportive evidence for this framework and discuss its implications for hypothesis testing, study design, and quantitative review.
PRINCIPLES UNDERLYING THE USE OF MULTIPLE INFORMANTS’ REPORTS

Does the average self and other agreement in children or adults constitute an epistemological crisis or a psychometric challenge? We think it is the latter. These estimates are the averages between two judges. Using two judges is like using a two-item self-report scale. Few researchers would endorse the practice in the self-report domain and the observational domain is no different. Indeed, the modal level of interjudge agreement found in both the child and adult literature poses an easily surmountable psychometric challenge with a relatively straightforward prescription: Use more judges. (Roberts & Caspi 2001)

As we indicated, in assessing youth, it has been a longstanding practice for clinicians to obtain assessment data from multiple informants such as parents, teachers, and the youths themselves. It is now commonly accepted that, because of differing perspectives, these informant ratings will not be interchangeable but can each provide potentially valuable assessment data. (Hunsley & Mash 2007).

These two statements refer to using and interpreting multiple informants’ reports in psychological assessments. Researchers often use multiple informants’ reports to assess children, adolescents, and adults (hereafter, we refer to children and adolescents collectively as “children” unless otherwise specified) (Achenbach 2006, De Los Reyes & Kazdin 2008, Oltmanns & Turkheimer 2009).
These informants include the person being assessed (e.g., patient), significant others (e.g., spouses in the case of adults; parents, teachers, and peers in the case of children), clinicians, and laboratory observers. In fact, use and interpretation of multiple informants’ reports comprise key components of best practices in evidence-based assessment (Dirks et al. 2012, Hunsley & Mash 2007). However, inconsistencies often arise among multiple informants’ reports (hereafter referred to as “informant discrepancies”) (Achenbach 2006). Researchers observe informant discrepancies even when informants complete parallel or identical measures (De Los Reyes 2011).

Informants often disagree in their perceived levels of a behavior. For instance, one informant may report on a questionnaire that a patient’s mood is “low” and another informant may report on a parallel questionnaire that the patient’s mood is “elevated” (De Los Reyes et al. 2011c,d). Consequently, informant discrepancies may profoundly impact how researchers interpret empirical findings and how practitioners interpret assessment outcomes in clinical practice. Indeed, consider the implications informant discrepancies may have when observed within assessments of patients’ functioning. For instance, informant discrepancies arise within assessments conducted for the purposes of (a) screening (e.g., Does the patient evidence “clinically relevant” depressive symptoms?), (b) diagnosis (e.g., Does the patient meet diagnostic criteria for major depressive disorder?), and (c) treatment response (e.g., Does treatment X effectively reduce the patient’s depressive symptoms?) (De Los Reyes & Kazdin 2005). Informant discrepancies often translate into inconsistent findings and thus raise dilemmas for interpreting the evidence regarding, for instance, the efficacy of interventions (De Los Reyes et al. 2010, 2011a). Thus, informant discrepancies introduce uncertainty into decision making in research and practice settings.

The “Grand Discrepancy” in Multi-Informant Assessment

Taken together, the quoted passages at the beginning of this review reflect disparate philosophies on how to interpret informant discrepancies. Roberts & Caspi (2001) interpret informant discrepancies as “nuisances” that require a methodological resolution. This interpretation can be traced to the concept of measurement error. Edgeworth (1888) translated the concept of measurement error from the physical sciences for use in the study of mental states, and it ultimately formed a key component of classical test theories of psychological measurement (Borsboom 2005). Specifically, variations among multiple informants’ reports of the same behavior can be seen as “error” around a “true score mean” representation of the behavior being assessed (Edgeworth 1888). Conversely, Hunsley & Mash (2007) interpret informant discrepancies as containing some kind of value. For example, informant discrepancies may represent variations in the expressions of assessed behaviors across contexts, as informants often vary in where they observe behavior (e.g., home versus school; De Los Reyes 2011). Achenbach et al. (1987) lucidly reflected this interpretation, in a meta-analysis of correspondence between informants’ reports of child mental health that was published nearly a century after Edgeworth’s (1888) article.

In this review, we do not focus on differences between researchers’ views on multiple informants’ reports (i.e., Caspi & Roberts versus Hunsley & Mash). Instead, we focus on differences within researchers—the differences between their views on multiple informants’ reports and the actions they often take to address informant discrepancies. We refer to this as the Grand Discrepancy in multi-informant assessment. Specifically, researchers often rationalize the importance of multi-informant assessment approaches using ideas that align with those of Hunsley & Mash (2007) (e.g., Klein et al. 2005, McMahon & Frick 2005, Pelham et al. 2005, Silverman & Ollendick 2005). At the same time, researchers often manage the discrepancies that arise out of multi-informant assessments using techniques that more closely align with the ideas of Roberts & Caspi (2001).

Three techniques currently implemented in psychological assessment highlight the key issues that drive our discussion about principles underlying the use of multiple informants’ reports.
First, researchers often address discrepant reports by applying a combinational algorithm to the outcomes of the reports. For example, researchers may implement an “and” rule, or a requirement that at least two (or all) informants positively endorse the presence of a specific behavior in order for that behavior to be considered present (Offord et al. 1996). Conversely, researchers may apply an “or” rule, or a requirement of a positive endorsement from at least one informant in order for the behavior to be considered present (Piacentini et al. 1992, Youngstrom et al. 2003). Researchers often use these rules when they anticipate low correspondence among measures(s) completed by informants (Goodman et al. 1997, Lofthouse et al. 2007). Second, researchers use statistical techniques to examine, in combination, multiple measures of a single behavior to arrive at an unobserved or “latent” representation of that behavior (e.g., structural equations models; Borsboom 2005). Often, these techniques focus on examining the variance shared among multiple informants’ reports of the same behavior (e.g., Arseneault et al. 2003, Holmbeck et al. 2002, Zhou et al. 2009).1 Third, in controlled trials of treatment efficacy, researchers often select, in advance of a trial, a single outcome indicator to represent treatment response—a “primary” outcome measure often completed by a single informant (e.g., DelBello et al. 2006, Klhnberg et al. 2005, Papakostas et al. 2010). Within the same trial, other informants might complete outcome measures on the same outcome domain assessed by the primary outcome measure; researchers often label these “secondary outcome measures” (e.g., Pettinati et al. 2010, Thurstone et al. 2010).

A common assumption made when using combinational algorithms, structural equations models, or primary outcome measures is that informant discrepancies (i.e., unshared variance) should be treated as measurement error (see also De Los Reyes et al. 2011b, Dirks et al. 2012, Sood et al. 2012). Thus, they highlight a Grand Discrepancy between ideas about the utility of multi-informant assessments and the actions researchers take to address informant discrepancies. Importantly, researchers rarely conduct empirical tests to examine whether they can justifiably treat informant discrepancies as measurement error.

It is difficult to fault researchers for the Grand Discrepancy. Indeed, historically researchers have had one guide for interpreting multiple reports about the same behavior. Specifically, a core principle of current research training is that a single study should include different methods for quantifying the same phenomenon (e.g., multiple informants’ reports of the same behavior), with all findings derived from these methods converging on the same set of observations or conclusions. We train our students—as our professors trained us—to assume that convergence equals truth. The more our measurements agree, the greater our confidence should be in our interpretations of these measurements. Meaningful observations can be drawn from convergence among reports, and thus there is a lack of meaning inherent in divergence among reports. Indeed, we even have a term for this interpretation: Converging Operations (Garner et al. 1956). Yet, researchers have no other guides for identifying alternative possibilities for interpreting multiple reports about the same behavior.

1Recently, researchers in the behavior genetics literature have tested whether unshared variance reflects important information unique to informants, rather than measurement error (Bartels et al. 2007). Specifically, researchers may construct structural models that partition variance reflecting genetic influences on the expression of the assessed behavior, shared environmental influences, and nonshared environmental influences, in addition to variance explained by error (Bartels et al. 2007). In fact, informant discrepancies have provided reliable information about how a person’s environment might affect his or her behavior differently, depending on where the informants providing reports tend to observe that person’s behavior (e.g., Derks et al. 2006). Thus, within structural models seeking to explain variance in behavior, behavior genetics researchers may treat informant discrepancies as useful information (Baker et al. 2007, Bartels et al. 2007, Derks et al. 2006, Tackett et al. 2009). At the same time, as alluded to previously, not all literatures treat unshared variance in structural equations models in this way (cf. Holmbeck et al. 2002, Valk et al. 2001).
Should we assume that assessing convergence among findings is the only method for meaningfully interpreting patterns of findings across multiple informants’ reports? For instance, cannot a patient express a behavior to a greater degree in one setting (home) than she does in another (school, work)? If such behavioral expressions occur systematically, shouldn’t researchers be able to reliably and validly measure this divergence in behavioral expressions using the discrepancies among multiple informants’ reports? Indeed, the settings within which a patient lives may vary as a function of the contingencies (e.g., corporal punishment and praise) that reinforce expressions of her behavior (e.g., Skinner 1953), and as mentioned previously, multiple informants may vary in where they observe a patient’s behavior (e.g., De Los Reyes 2011).

Researchers have developed a number of conceptual models for understanding informant discrepancies within specific areas (e.g., developmental psychopathology and controlled trials research; De Los Reyes 2013; De Los Reyes & Kazdin 2005, 2006; Goodman et al. 2010; Kraemer et al. 2003). Yet, beyond Converging Operations, clinical science does not have a general framework for understanding and interpreting multiple informants’ reports within a study. As a result, critical questions often go unaddressed within studies using multiple informants’ reports. Specifically, what empirical questions would we pose to detect meaningful divergence among multiple informants’ reports of the same behavior? How would we design studies to address questions of meaningful divergence? Do we even have a term for meaningful divergence? We do not. Without a framework for describing and testing the possibility of meaningfully interpreting informant discrepancies, researchers may default to erroneously interpreting such discrepancies using conceptual and measurement models that assume they reflect error.

The Present Review

This review advances psychological assessment in three ways. First, we elaborate on the Grand Discrepancy. Specifically, we focus on Converging Operations: a set of measurement conditions for interpreting patterns of findings based on the consistency within which findings yield similar conclusions (Garner et al. 1956). Further, we review work in subdisciplines of clinical science (e.g., developmental psychopathology, controlled trials research, and personality disorders assessments) that supports incorporating research concepts other than Converging Operations for interpreting multiple informants’ reports.

Second, we review evidence indicating that, under some circumstances, informant discrepancies yield meaningful information about behavior. We introduce a concept to describe these instances (Diverging Operations). We also introduce a concept to describe instances within which researchers can interpret informant discrepancies as reflecting measurement error and thus can justifiably treat informant discrepancies as measurement error (Compensating Operations). We integrate these concepts into a framework to guide interpretations of multi-informant assessments [Operations Triad Model (OTM)]. The framework focuses on determining and characterizing the circumstances within which multiple informants’ reports yield either converging or diverging findings. Lastly, we provide recommendations on how to address informant discrepancies and highlight directions for future research.2

1We focus on inconsistent findings as they relate to multi-informant assessments. Yet, inconsistent findings arise in many other circumstances of multimethod assessment. For instance, researchers commonly observe low correspondence between subjective reports of anxious arousal and objective measures of psychophysiology (e.g., measurements of heart rate or skin conductance; for a review, see Thomas et al. 2012). We encourage further thought and inquiry on whether the issues we discuss in this review extend to comprehensive assessment occasions other than multi-informant assessments.
UNDERSTANDING THE GRAND DISCREPANCY IN USE AND INTERPRETATION OF MULTIPLE INFORMANTS’ REPORTS

Converging Operations

Fundamental concepts in psychological measurement might provide insight into the disconnection between researchers’ rationales for using multiple informants and how they interpret and manage informant discrepancies. Specifically, psychologists can rarely (if ever) argue that a single measure should be considered a definitive indicator to quantify a specific behavior (e.g., aggression, anxiety, attention, disruptive behavior, mood, racial bias, or self-esteem). Therefore, psychologists receive considerable training in constructing and administering various ways of quantifying behavior (e.g., multiple methods for assessing adulthood depressive symptoms). However, as mentioned previously, multi-informant, multimethod assessments robustly yield inconsistent outcomes and thus inconsistent empirical findings (Achenbach et al. 1987). Perhaps because inconsistent findings have historically been interpreted as a hindrance to advancing scientific knowledge, the typical approach to observing inconsistent findings is to stake the claim that science needs to progress in spite of these inconsistencies, not as a consequence of observing them (De Los Reyes 2011).

As a result, psychological research training has historically relied on the concept of Converging Operations to interpret findings derived from multiple reports of the same behavior. Under Converging Operations, the strength of a single study’s findings and thus the inferences one can draw from these findings rest on whether different ways of observing, quantifying, or examining the same behavior consistently point to the same research conclusion (Garner et al. 1956). Converging Operations differs from typical definitions of replication, or the ability to draw similar conclusions across multiple studies conducted under similar conditions (e.g., Pryor & Ostrom 1981, Valentine et al. 2011). Relatedly, Campbell & Fiske (1959) drew distinctions between validity (i.e., agreement between two maximally different measures of the same trait) and reliability (i.e., agreement between two maximally similar measures of the same trait). One observes widespread use of Converging Operations across disparate fields including philosophy of science (e.g., Hempel 1966), psychometrics (e.g., Nunnally & Bernstein 1994), neuroscience (e.g., Gazzaniga et al. 2008), and clinical science (e.g., Durston 2008).

Applying Converging and Diverging Concepts to Subdisciplines in Clinical Science

The pervasiveness of the Converging Operations concept in multiple areas of science and the humanities appears sensible. Indeed, Converging Operations ought to lead researchers to base research conclusions on the preponderance of the evidence (e.g., De Los Reyes & Kazdin 2006, Weisz et al. 2005). Yet, researchers should encounter difficulties with applying Converging Operations to every circumstance within which they seek to interpret patterns in research findings. For example, Converging Operations may insufficiently characterize instances within which (a) informants’ reports yield diverging research findings, and (b) this divergence reveals meaningful information germane to understanding the behavior being assessed. Thus, concepts for characterizing converging and diverging research findings should play a role in interpreting the outcomes of multiple informants’ reports.

In fact, research and theory within subdisciplines of clinical science, namely developmental psychopathology, controlled trials research, and personality disorders, support a focus on both converging and diverging research findings. First, in developmental psychopathology assessments, variations in people’s behaviors may result from variations in people’s environments (Skinner...
For instance, one might infer meaningful divergence among parent and teacher reports of children’s disruptive behavior by collecting data that meet two expectations. First, children considered as expressing clinically relevant disruptive behavior symptoms ought to vary in the settings within which they express such symptoms. Second, parent and teacher reports of children’s behavior ought to reflect this expected variation in expression. Thus, if some children expressed disruptive behavior to a greater degree in home settings than they did in school settings, parent reports of these children would evidence disruptive behavior symptoms to a greater degree than teacher reports of these same children. Conversely, observing meaningful convergence between reports might involve a study that supported researchers’ expectations that (a) children express disruptive behavior symptoms consistently across the contexts within which parents and teachers observe behavior (e.g., home and school settings), and (b) these children evidence such behavior on reports completed by both parents and teachers.

Second, researchers conducting controlled trials typically hypothesize that any one of a trial’s multiple outcomes should indicate the same or similar conclusions as to a treatment’s efficacy. That is, one rarely (if ever) encounters a trial for which the investigative team hypothesizes: We expect one set of informants’ outcome reports (e.g., self- and clinician reports) to support the treatment’s efficacy to a greater degree than the support provided by another set (e.g., independent observations and teacher reports) (De Los Reyes & Kazdin 2006). However, controlled trials often reveal inconsistent findings as to an intervention’s effects (De Los Reyes & Kazdin, 2006, 2008, 2009; Koenig et al. 2009). An important implication of relying on Converging Operations in controlled trials is that researchers typically refrain from advancing a priori hypotheses to address the possibility of inconsistent findings. Yet, when prior studies do not support Converging Operations, it becomes important for researchers to understand inconsistent findings. Specifically, inconsistent findings might be explained by (a) measurement error in one, some, or all of the informants’ reports; or, in contrast, (b) meaningful variation across reports. Importantly, reliance on Converging Operations likely has led to researchers placing too little focus on whether inconsistent findings reveal information about variations in treatment response (De Los Reyes & Kazdin 2008).

Third, as mentioned previously, low multi-informant correspondence is the norm rather than the exception in assessments of child, adolescent, and adult psychopathology (Achenbach et al. 1987, 2005). These findings extend to observations of, at best, modest correspondence between self- and peer-reported personality pathology (Oltmanns & Turkheimer 2009). Such findings are intriguing in light of the idea that personality disorder features are often conceptualized as stable across settings and time (Am. Psychiatr. Assoc. 2001). Consistent with clinical child assessments (De Los Reyes 2011), the data indicate that discrepant reports of adult personality pathology may not be attributable to a lack of psychometric rigor on the part of self- and/or peer reports (Thomas et al. 2003). Yet, much of the focus on resolving the issue of discrepant reports involves identifying circumstances within which a given report (e.g., self, peer, and clinician) is “most valid” for assessing personality pathology (Klonsky et al. 2002, Oltmanns & Turkheimer 2009). Another method for interpreting these discrepant reports may involve distinguishing those circumstances within which the discrepant reports represent measurement error, or alternatively meaningful variation in the expression of personality pathology. Indeed, basic science in personality psychology indicates that a person’s expressions of behaviors indicative of personality traits can be dictated, in part, by the extent to which settings encountered by that person in daily life consistently elicit expressions of these behaviors (Mischel & Shoda 1995). Alternatively, when discrepancies between reports reflect measurement error, this may provide justification to (a) identify a “most valid” informant for assessing personality pathology and/or (b) discard those informants’ reports that do not surpass acceptable levels of reliability and validity. Thus, even if a domain of personality pathology is conceptualized as stable across settings, it may be useful to examine whether discrepant outcomes in
multi-informant assessments of such pathology yield meaningful information on how expressions of pathology vary across settings. In sum, research and theory in multiple areas of clinical science support the need to delineate research concepts for interpreting patterns of findings from multiple informants’ reports, beyond that of Converging Operations.

THE OPERATIONS TRIAD MODEL: A FRAMEWORK FOR INTERPRETING MULTIPLE INFORMANTS’ REPORTS

Overview of Framework

In line with identifying multiple operations concepts apart from Converging Operations, it is important to conceptualize three decision-making processes. The first involves hypothesizing whether findings from multiple informants’ reports will converge on a common research conclusion, or diverge or point to different research conclusions. The second involves creating operational definitions of converging versus diverging research findings. The third involves characterizing or interpreting patterns of findings derived from multiple informants’ reports. We propose a framework by which to guide this decision making—the Operations Triad Model (OTM).

A key tenet of the OTM is that researchers should anticipate whether their study will yield converging or diverging findings. Broadly, extensive evidence across multiple areas of clinical science indicates low-to-moderate levels of correspondence in multi-informant assessments (Achenbach 2006, De Los Reyes & Kazdin 2004, 2005, Klonsky et al. 2002, Oltmanns & Turkheimer 2009). Thus, researchers can use this evidence to guide their predictions as to whether they will observe converging findings across multiple informants’ reports. In line with these predictions, researchers must use or develop rubrics for setting operational definitions for converging versus diverging research findings (De Los Reyes & Kazdin 2006).

In turn, the OTM guides researchers toward proposing a priori hypotheses of whether findings based on informants’ reports will converge, and if not, what they hypothesize the diverging findings will reflect (e.g., meaningful variation in behavior versus measurement error). Specifically, for any one study, three questions are of interest: (a) Will the evidence support an interpretation of convergence among empirical findings across informants’ reports of a behavior? (b) If one expects divergence in empirical findings, will the observed divergence reflect meaningful information about variations in behavior? (c) In the absence of evidence indicating either converging research findings or meaningful reasons for observing diverging findings, will the divergence reflect measurement error or some other psychometric or methodological process? Thus, the OTM guides researchers toward posing a priori hypotheses as to whether informants’ reports will converge or diverge, and then based on these reports, interpreting what patterns of converging or diverging empirical findings represent.

Considerations Underlying Development of the OTM

A key issue underlying development of the OTM involves delineating research concepts beyond Converging Operations. That is, what distinguishes new concepts for interpreting multiple informants’ reports from Converging Operations? There are two key considerations.

Defining behavioral expressions within and across factors. The first consideration involves conceptualizing the consistency by which a behavior is expressed across a factor of interest. One factor might be context, or the settings within which an assessed behavior may be expressed. For instance, do children varyably or invariably express disruptive behavior symptoms across home and
school settings? Here, consider use of parent and teacher reports to assess childhood disruptive behavior, where such reports serve as indicators of a child’s behavior as expressed in home (parent) versus school (teacher) settings. To define behavioral expressions across settings, a researcher decides the possible settings within which children’s disruptive behavior could be expressed as well as whether children’s disruptive behavior varies in its expression across these settings. Thus, if a researcher views context as reflecting variation in the expression of disruptive behavior within and/or across home and school settings, the key question is: Do I identify a child’s behavior as disruptive if she or he expresses signs of disruptive behavior (a) across home and school settings, (b) in only one setting, or (c) either “a” or “b” (Kraemer et al. 2003)?

Ability of multiple informants to detect behavioral expressions across factors. A second consideration involves the expectation that multiple informants’ reports about a behavior can reliably and validly “pick up” expressions of the behavior across a factor of interest (McFall & Townsend 1998). Following from our previous example, a researcher might hypothesize that children’s disruptive behavior varies as a function of context, whereby some children express disruptive behavior in only home or school settings. The key issue to address would be if parent and teacher reports reliably and validly detect variable expressions of behavior across settings. Stated another way, if one could independently assess children’s disruptive behavior (e.g., laboratory observation task) so as to identify children who express such behavior within the home setting to a greater degree than they do the school setting, would this variation relate to parents reporting disruptive behavior to a greater degree than when based on teacher reports?

In sum, these two considerations allow researchers to develop operations concepts that can be (a) conceptually distinguished from Converging Operations and (b) used to interpret patterns of findings observed among multiple informants’ reports. Below, we identify and describe two operations concepts apart from Converging Operations: Diverging Operations and Compensating Operations. We also discuss empirical work supporting the development of these research concepts. Further, we illustrate how researchers can interpret or characterize findings as instances of either of these two new concepts or Converging Operations. In Figure 1, we provide graphical depictions of Converging Operations (Figure 1a) as well as each of the new research concepts (Figure 1b,c).

Diverging Operations: When Informant Discrepancies Reflect Meaningful Information

Defining Diverging Operations. The Diverging Operations concept delineates circumstances within which a study yields evidence suggesting that (a) the behavior being assessed variably expresses itself across a factor of interest, and (b) the discrepancies among multiple informants’ reports reflect this meaningful variation in the behavior’s expression (Figure 1b). On both conceptual and empirical grounds, extensive evidence supports developing this concept of Diverging Operations and distinguishing it from that of Converging Operations.

First, conceptual support for Diverging Operations comes from decades of basic psychological research indicating that systematic social and cognitive mental processes account for different

3These ideas share similarities with recent work on measurement validity (Borsboom et al. 2004). Specifically, the two key factors to consider when gauging the validity of a measure are (a) whether the construct assessed by the measure exists and (b) whether variations in the construct causally produce variations in scores taken from the measure. Similarly, the features that may distinguish different ways of interpreting variations between multiple informants’ reports should revolve around (a) how a researcher conceptualizes manifestations of the assessed construct and (b) whether a researcher considers convergence and/or divergence between informants’ reports as valid reflections of the construct’s manifestations.
Figure 1

Graphical representation of the research concepts that comprise the Operations Triad Model. The top half (a) represents Converging Operations: a set of measurement conditions for interpreting patterns of findings based on the consistency within which findings yield similar conclusions. The bottom half denotes two circumstances within which researchers identify discrepancies across empirical findings derived from multiple informants' reports and thus discrepancies in the research conclusions drawn from these reports. On the left (b) is a graphical representation of Diverging Operations: a set of measurement conditions for interpreting patterns of inconsistent findings based on hypotheses about variations in the behavior(s) assessed. The solid lines linking informants' reports, empirical findings derived from these reports, and conclusions based on empirical findings denote the systematic relations among these three study components. Further, the presence of dual arrowheads in the figure representing Diverging Operations conveys the idea that one ties meaning to the discrepancies among empirical findings and research conclusions and thus how one interprets informants' reports to vary as a function of variation in the behaviors being assessed. Lastly, on the right (c) is a graphical representation of Compensating Operations: a set of measurement conditions for interpreting patterns of inconsistent findings based on methodological features of the study's measures or informants. The dashed lines denote the lack of systematic relations among informants' reports, empirical findings, and research conclusions.

Attribution Bias Context (ABC) Model: theoretical framework that explains why informant discrepancies occur in clinical assessments of children and adolescents.

people perceiving the same behaviors differently (Johnson et al. 1993, Malle 2006, Pasupathi 2001). In fact, this work informed the development of a theoretical framework for why informant discrepancies exist in clinical assessments of child psychopathology: the Attribution Bias Context (ABC) Model (De Los Reyes & Kazdin 2005). The ABC Model posits that informant discrepancies exist because informants systematically differ on three central characteristics: (a) informants' own interpretations of why the child is expressing the assessed behaviors (i.e., child’s disposition versus environmental constraints on the child’s behavior), (b) informants’ perspectives or the decision thresholds that guide their identification of behaviors that warrant treatment, and (c) the contexts within which researchers and practitioners gather behavioral reports (e.g., clinical;
community-based or epidemiological assessments), as well as the contexts within which informants observe the behavior (e.g., home and school). Importantly, the ABC Model delineates systematic differences among informants in how or within which contexts they observe behavior. Thus, theoretically these systematic differences among informants ought to translate into discrepancies among informants’ reports that reflect meaningful variation in the behaviors about which informants provide reports.

Second, empirical support for Diverging Operations comes from a number of recent investigations of informant discrepancies conducted across diverse clinic and community samples, informants, and behavioral reports (De Los Reyes 2011, 2013). For the purposes of this review, we focus on those investigations that have examined whether discrepancies reflect variations in the contexts within which children express specific behaviors and whether informants attend to and use contextual information when providing behavioral reports.

Informant discrepancies that reflect variations in behavior expressed in home versus school settings. Controlled laboratory observations support the idea that informant discrepancies reflect information about contextual variations in behavior. Specifically, in assessments of children’s disruptive behavior symptoms, researchers commonly encounter discrepancies between reports from parents and teachers about a child’s behavior. Much of the conceptual modeling of these discrepancies posits that they result from differences between informants’ reactions to the child’s behavior being assessed and that these reactions reflect variations in children’s behavior across the contexts within which informants observe such behavior (e.g., home versus school contexts; Achenbach et al. 1987, De Los Reyes & Kazdin 2005, Dumenci et al. 2011, Kraemer et al. 2003).

For example, a recent study examined whether informant discrepancies in reports of children’s disruptive behavior symptoms relate to assessments of these symptoms when measured across various laboratory-controlled interactions between the child and multiple adults (De Los Reyes et al. 2009). In this study, information on each child’s disruptive behavior was available via reports taken from parent and teacher. This study also included indices of disruptive behavior from an independent observational measure that assessed children’s disruptive behavior across multiple interactions between the child and her or his parent, or the child and an unfamiliar clinical examiner. Not surprisingly, De Los Reyes and colleagues (2009) identified substantial discrepancies in parent and teacher reports of children evidencing high levels of disruptive behavior symptoms, as well as substantial variation in disruptive behavior as observed in the laboratory. Interestingly, parent-teacher reporting discrepancies mapped onto variations in children’s disruptive behavior observed in the laboratory. For instance, laboratory observations of childhood disruptive behavior in the presence of the parent predicted disruptive behavior identified by parents only but not teachers only, relative to the children who did not evidence disruptive behavior based on either parent or teacher report. In contrast, laboratory observations of childhood disruptive behavior in the presence of an unfamiliar clinical examiner predicted disruptive behavior identified by teachers only but not parents only. Further, when disruptive behavior was identified by both parent and teacher, laboratory observations predicted disruptive behavior reports when the disruptive behavior was expressed within both parent-child and examiner-child interactions. However, observed disruptive behavior expressed exclusively within parent-child or examiner-child interactions (i.e., within one interaction and not the other) did not significantly predict disruptive behavior identified by both parent and teacher. Thus, De Los Reyes and colleagues (2009) identified variations between parent and teacher reports consistent with Diverging Operations. Specifically, the discrepancies between reports reflected variations in children’s disruptive behavior as a function of their laboratory interactions with parental versus nonparental adults.
As another example of informant discrepancies reflecting Diverging Operations, consider a recent study of parent and teacher reports of children’s aggressive behavior (Hartley et al. 2011). In this study, parent-teacher discrepancies in reports of aggressive behavior related to informants’ perceptions of the environmental cues that elicited aggressive behavior (e.g., negative peer interactions or demands placed on the child by adult authority figures). Specifically, Hartley and colleagues (2011) observed that increased informant correspondence related to increased similarities between the environments within which informants observed children’s aggressive behavior. These findings dovetail with research and theory in personality psychology reviewed previously (Mischel & Shoda 1995), indicating that whether a child expresses the same behavior (e.g., aggression) across contexts may be dictated, in part, by similarities among contexts in the contingencies that increase the likelihood of that behavior’s expression.

Informants attend to contextual information when making reports. Importantly, the effects of contextual information on trained judges’ (i.e., clinicians) and untrained informants’ reports have recently received experimental support. For instance, De Los Reyes & Marsh (2011) presented clinicians with vignettes of children described as living in contexts that either posed risk for a conduct disorder diagnosis (e.g., exposure to parental psychopathology and poor peer relations) or contexts posing no such risk. Clinicians provided ratings of the likelihood that a comprehensive clinical evaluation of the child would suggest that the child meets criteria for a conduct disorder diagnosis. Based on these vignette descriptions, clinicians were more likely to view behaviors as indicative of a conduct disorder diagnosis if the children described in vignettes were living in contexts that pose risk for the disorder relative to contexts posing no such risk.

These findings from De Los Reyes & Marsh (2011) indicate that trained judges of patients’ behavior attend to the contexts surrounding patients’ clinical presentations when providing reports about patients’ behavior. Thus, the findings raise the question as to whether discrepancies between untrained informants’ reports might be explained, in part, by differences between informants in the contexts within which they observe behaviors about which they provide reports. Such an interpretation of informants’ reports would fall within the scope of Diverging Operations. Interestingly, in another recent experimental study, researchers trained mothers and adolescents to systematically incorporate contextual information (e.g., settings such as “at parties” or “when shopping at the mall with friends”) when providing reports about what parents know about their adolescents’ whereabouts and activities (parental knowledge; De Los Reyes et al. 2013). In this study, informants’ reports about parental knowledge completed after training became more discrepant from each other than when such reports were completed without training. Specifically, relative to reports completed without training, mothers reported significantly greater levels of parental knowledge than adolescents reported. Thus, these observations are consistent with Diverging Operations. Specifically, they support the idea that informants’ reports disagree, in part, because they meaningfully differ in the settings within which they observe the behaviors being assessed.

Recent studies using multiple research designs and samples demonstrate the ability of informant discrepancies to represent meaningful links with how children behave across and within contexts. An important implication of this work is that if informants observe behavior in different contexts, and these contextual differences account for discrepancies among informants’ behavioral reports, then each informant’s report may nonetheless be a valid report (e.g., De Los Reyes et al. 2012a,b). In sum, recent research and theory indicate support for developing a Diverging Operations research concept for meaningfully interpreting discrepancies among multiple informants’ reports.
Compensating Operations: When Informant Discrepancies Reflect Measurement Error

Defining Compensating Operations. To interpret informant discrepancies as reflecting Compensating Operations (Figure 1), two conditions must be met. First, multiple informants’ reports should yield discrepant empirical findings about the behavior being assessed. Second, these discrepancies should not reflect meaningful variation in the expression of the behavior being assessed. For example, the discrepancies may be due to methodological differences between two informant’s otherwise reliable and valid reports. Alternatively, the discrepancies may be due to one of two informants’ reports (or both informants’ reports) yielding unreliable or invalid indices of the behavior being assessed. Thus, the Compensating Operations concept is similar to the Diverging Operations concept in that one observes informant discrepancies. Yet, Compensating Operations differs from Diverging Operations because it reflects instances within which evidence fails to indicate meaningful mechanisms to explain the informant discrepancies.

Observing patterns of diverging findings as reflections of Compensating Operations provides a researcher with the justification to approach informants’ reports in one of two ways. First, if the informants provided reliable and valid data and the discrepancies were due to methodological differences between reports, a researcher may use the statistical and methodological approaches discussed previously (e.g., structural equations models and combinational algorithms) to examine the converging evidence among the informants’ reports. Second, if the discrepancies were due to a subset of the informants providing unreliable or invalid reports, a researcher may discard these reports in favor of the informants’ reports that yielded reliable and valid data. Importantly, findings that reflect Converging Operations may also justify management of multi-informant data using these methods. Indeed, convergence among findings may nonetheless result in nontrivial amounts of measurement error, prompting researchers to use methods to account for such error. As mentioned previously, current statistical and methodological approaches often assume that informant discrepancies reflect error. However, researchers ought to test these assumptions. Findings reflecting Compensating Operations (and Converging Operations) allow a researcher to treat informants’ unique or unshared information as error. A key contribution of the OTM is that it guides researchers in testing whether informant discrepancies reflect measurement error.

Interpreting Multiple Informants’ Reports Using Converging, Diverging, and Compensating Operations

As illustrated in Figure 1, Converging, Diverging, and Compensating Operations each yield distinct conceptualizations of empirical findings observed across multiple informants’ reports. What empirically distinguishes these research concepts from each other? In Figure 2, we illustrate how to empirically test patterns of empirical findings among multiple informants’ reports. Specifically, we organized Figure 2 into a decision tree consisting of a series of empirical questions. The outcomes of the empirical questions outlined in Figure 2 can assist in interpreting patterns of empirical findings and ultimately in determining whether Converging, Diverging, or Compensating Operations best represents a given pattern of findings.

Specifically, interpreting multiple informants’ reports using the OTM involves three steps. First, before data collection, one hypothesizes as to whether a study’s findings from multiple informants’ reports will yield converging research findings or diverging findings (Figure 2a). These hypotheses could be made based on conceptual models of convergence (e.g., De Los Reyes & Kazdin 2006) and/or prior empirical estimates of multi-informant correspondence...
Converging Operations

- Do the empirical observations drawn from multiple informants’ reports reach an a priori threshold of consistency in research conclusions?
 - A “yes” = evidence supportive of Converging Operations.
 - A “no” = post-hoc tests for Compensating Operations.

Diverging Operations

- Do the informants’ reports reach a priori thresholds of measure reliability in the sample in which one observes informant discrepancies?
 - Do the informants’ reports relate to measures of other constructs identified a priori as supportive evidence of measure validity?
 - Can one rule out methodological factors as explanations of informant discrepancies?
 - If so, do the discrepancies exhibit systematic variation germane to the behaviors for which informants provide reports?
 - “Yes” responses to all of the above questions = evidence supportive of Diverging Operations.
 - Conclusion: One must incorporate meaningful interpretations of the informant discrepancies into the conceptualization of the assessed behaviors.
 - A “No” response to any of the above questions = post-hoc tests for Compensating Operations.

Compensating Operations

- Does the evidence reveal that one or more informants provide unreliable reports?
- Does the evidence reveal that one or more informants’ reports are not valid?
- Does the evidence reveal that methodological factors account for informant discrepancies?
 - Affirmative responses to the above questions = evidence supportive of Compensating Operations.
 - Conclusion: One can interpret informant discrepancies as resulting from psychometric issues and thus can be justified in using statistical or methodological techniques to compensate for the lack of convergence.

A priori hypothesis regarding informants’ reports

- Informant correspondence = Conduct tests for Converging Operations
- Informant discrepancies = Conduct tests for Diverging Operations

Figure 2

Graphical display of decision-making processes based on the Operations Triad Model. To use this process, researchers must pose a priori hypotheses as to whether they expect converging findings or diverging findings (a). Empirical questions outlined in the figure can then guide researchers’ tests of their expectations. For instance, these questions can be used to determine if the evidence supports the a priori expectation of converging findings (i.e., Converging Operations; b). Questions can also be posed to determine whether the evidence supports the a priori expectation of diverging findings as yielding meaningful information about behavior (i.e., Diverging Operations; c). If the evidence fails to support either of these hypotheses, researchers can test whether the observations are best explained by measurement error (i.e., Compensating Operations; d).

(e.g., Achenbach et al. 1987, 2005). Second, if the expectation is that the informants’ reports will correspond or converge on a common conclusion, one tests for whether Converging Operations accounts for the study’s findings (Figure 2b). Alternatively, if one expects that informants’ reports will yield diverging findings and for meaningful reasons (e.g., contextual variability in behaviors being assessed), one tests whether Diverging Operations accounts for the study’s findings (Figure 2c). Third, if neither Converging Operations nor Diverging Operations accounts for the study’s findings, one conducts post-hoc tests of whether Compensating Operations explains the findings (Figure 2d).

In sum, the steps outlined in Figure 2 allow researchers to empirically delineate two sets of conditions. The first set characterizes conditions within which multiple informants’ reports yield
the same or similar research conclusions; Converging Operations accounts for these conditions. The second set characterizes conditions within which multiple informants’ reports yield different research conclusions. For this second set of conditions, Diverging Operations and Compensating Operations can be used to characterize informant discrepancies as either reflecting meaningful (Diverging Operations) or mundane (Compensating Operations) information about the behaviors being assessed. Importantly, within any one study, a specific pattern of empirical findings among multiple informants’ reports can be uniquely characterized as an instance of Converging, Diverging, or Compensating Operations.

Identifying Converging Operations. The key decision to be made regarding Converging Operations is to determine the a priori threshold that findings from multiple informants’ reports must pass to be considered as converging on a common research conclusion (Figure 2a,b). Stated another way, a Converging Operations account of multiple informants’ reports requires setting an operational definition or threshold for convergence. For instance, among a set of informants’ outcome reports for a controlled trial of a treatment for adulthood social anxiety, how often must these reports indicate significant treatment improvement for the treatment condition, relative to a comparison condition (e.g., placebo control condition), for one to identify the informants’ reports as collectively converging on a common conclusion (see also De Los Reyes & Kazdin 2008)? Failing to meet this threshold for convergence would necessitate posthoc tests to determine whether Compensating Operations accounts for the findings (Figure 2d). To be clear, one ought to avoid conducting posthoc tests to probe for Diverging Operations because, similar to Converging Operations, hypotheses regarding Diverging Operations ought to be specified a priori.

A key issue regarding use of Converging Operations is identifying examples of operational definitions of convergence. Although rare, an example of an operational definition of Converging Operations can be found in recent conceptual work focused on interpreting the outcomes of randomized controlled trials. Specifically, as mentioned previously, controlled trials often yield inconsistent conclusions regarding the efficacy of treatments examined within these trials, particularly among multiple informants’ outcome reports (De Los Reyes & Kazdin 2006, Koenig et al. 2009). However, treatment studies might not all yield inconsistent findings (De Los Reyes & Kazdin 2008). For example, a study might indicate positive effects of a treatment across multiple outcome measures, but another study of that same treatment might only indicate positive treatment benefits sporadically or across a few outcome measures (De Los Reyes & Kazdin 2009). Thus, controlled trials researchers would benefit from a guide for distinguishing trials that yield converging versus diverging research conclusions across multiple informants’ reports.

To this end, one operational definition of convergence applicable to Converging Operations can be found in the Range of Possible Changes (RPC) Model: a classification system for identifying consistencies and inconsistencies in research findings in controlled intervention studies (De Los Reyes & Kazdin 2006). Specifically, the RPC Model includes categories that can serve as operational definitions of converging research findings within a single controlled trial. For instance, to classify a single study’s findings, among the categories outlined in the RPC Model is one denoting those circumstances within which 80% of three or more outcome measures that vary by informant type, measurement method, and method of statistical evaluation reveal significant differences between treatment and control or comparison conditions. As an example, consider a study that assessed treatment response on 10 measures. Across these measures, parents, teachers, and clinicians provided outcome reports. These informants provided outcome reports within a multimethod assessment paradigm that included questionnaires, interviews, and laboratory observations. Further, researchers evaluated differences between treatment and control conditions using three methods of statistical evaluation (e.g., mean differences, diagnostic status, and clinically...
significant change). Using the threshold described previously, a researcher would operationally define converging findings as observing evidence of significant differences between treatment and control conditions on 8 of the 10 measures.

In sum, the RPC Model provides a categorical distinction of consistent research findings that can be used to delineate evidence supporting Converging Operations. Importantly, if one were to implement this categorical distinction as the threshold for classifying whether a study’s findings reach convergence, any level of consistency that does not reach this threshold would be identified as an incidence of informant discrepancies. If a researcher does not identify convergence, she or he would progress down the decision-making process (Figure 2d) to testing whether the observed findings could be explained by Compensating Operations.

Identifying Diverging or Compensating Operations. As mentioned previously, the OTM includes decision-making rules for interpreting multiple informants’ reports that indicate discrepant or inconsistent research conclusions (Figure 2a,c,d). Consistent with specifying a priori operational definitions of converging findings for tests of Converging Operations, for tests of Diverging Operations one ought to specify a threshold by which one would identify diverging findings. Here, one sets a threshold with the expectation that the level of convergence in findings among multiple informants’ reports will fall at or below the threshold. This can be contrasted with Converging Operations, in which the level of convergence among findings should meet or surpass the threshold.

For those circumstances within which a researcher hypothesizes and subsequently observes diverging research findings, it is crucial to address three questions (Figure 2c). First, will the evidence reveal that the informants provide reliable and valid reports? Here, it is important to set a priori thresholds for each of these psychometric properties of the informants’ reports being examined. In the case of two informants’ (e.g., parent and teacher) reports of a patient’s anxiety, an example might include satisfying two criteria: (a) coefficient alpha estimates at or above 0.70 as evidence of internal consistency and (b) significant correlations between the informants’ anxiety reports and a third informant’s report of a theoretically related construct as evidence of convergent validity (e.g., patient’s self-reported depressive symptoms; see Nunnally & Bernstein 1994). Here, if both informants’ reports do not meet these thresholds, Compensating Operations likely account for the findings, and one would proceed to examining the questions regarding Compensating Operations outlined in Figure 2d.

If each informant’s report does meet these thresholds, one addresses a second question: Will the evidence reveal that methodological factors cannot account for the discrepancies between informants’ reports? This question should be addressed in advance of executing a study. Specifically, researchers should ensure that they will use parallel measures to gather multiple informants’ reports about the same behavior. These measures should hold critical measurement factors constant (e.g., item content and response scaling; see De Los Reyes 2013). Importantly, for some clinical assessments (e.g., adult psychopathology), researchers and practitioners may encounter difficulties with holding measure methodology constant across informants’ reports (e.g., patient and clinician reports). For example, a recent quantitative review of cross-informant correspondence in adult psychopathology assessments found less than 1% of studies contained sufficient information to assess correspondence (Achenbach et al. 2005). At minimum, researchers should ensure that the measures used to take informants’ reports exhibit patterns of correspondence indicating that informant discrepancies arose as a result of different informants’ perspectives. For instance, correlations between reports completed by the same informant should be significantly larger in magnitude than correlations between reports completed by different informants.

Provided that informants completed parallel measures, one addresses a third question to test whether informant discrepancies are best explained using Diverging Operations: Will the
discrepancies empirically and conceptually relate to the assessed behavior? Importantly, when a researcher hypothesizes that informant discrepancies will yield meaningful information about the assessed behaviors, it is important that the researcher designs the study to test this hypothesis. That is, the researcher ought to administer measures in the study that would yield data to test whether informant discrepancies reveal meaningful information. If the data revealed that the discrepancies meaningfully informed their understanding of the assessed behavior, then the researcher identified evidence consistent with a Diverging Operations interpretation of the discrepancies. The researcher could subsequently use this evidence and the Diverging Operations concept to inform interpretations of the research findings.

In sum, affirmative (i.e., “yes”) responses to all three of the questions outlined in Figure 2c can be used to identify informant discrepancies that can be explained by Diverging Operations. Under the OTM, a “no” response to any of the three questions would prompt a researcher to test whether the informant discrepancies may be explained by Compensating Operations (Figure 2d). That is, any circumstance within which one observes (a) one or more informants providing unreliable or invalid reports or (b) differences between the methodologies of measures used by informants to provide behavioral reports would result in a researcher being justified in testing whether a Compensating Operations interpretation best explains the observed findings.

Illustration of the OTM

In advancing a framework to guide understanding patterns of findings from multiple informants’ reports, it is important to illustrate how to apply the framework. We will assume that our illustration supports a Diverging Operations interpretation of the research findings (Figure 2a,c). Specifically, consider a controlled trial in which an investigative team uses parent- and teacher-reported outcomes to test the effects of a behavioral parent-training intervention developed to decrease oppositional behavior in young children. Prior work suggests discrepancies often arise between parents’ and teachers’ reports of young children’s oppositional behavior (e.g., Hinshaw et al. 1992). Further, a recent quantitative review of studies of this intervention indicates that the measures that most consistently support its efficacy are parent-reported outcomes (De Los Reyes & Kazdin 2009). Thus, in addressing the question posed in Figure 2a, based on prior research the investigative team might expect informant discrepancies that can be characterized by observing the intervention reduce oppositional behavior to a greater degree when based on parent-reported relative to teacher-reported outcomes.

The expectation by the investigative team that they will observe informant discrepancies in their research findings ultimately results in the team planning their study so as to adequately test the questions posed in Figure 2c. First, the researchers will seek to examine whether psychometric tests reveal that the discrepant informants’ reports nonetheless support the reliability and validity of the individual parent and teacher reports. Tests of these psychometric properties might be informed by prior psychometric work on evidence-based assessments for childhood oppositional behavior (McMahon & Frick 2005).

Second, consistent with the questions posed in Figure 2c, the investigative team would examine whether the discrepancies between parent and teacher reports meaningfully inform their understanding of the oppositional behavior observed in their sample. Here, the investigative team might first conceptualize how parent-teacher discrepancies in reports of children’s oppositional behavior meaningfully reflect an important component of oppositional behavior. Along these lines, perhaps the investigative team would draw from theory suggesting that parents and teachers provide discrepant reports because they observe children in different contexts or settings (parents at home versus teachers at school; Achenbach et al. 1987, Kraemer et al. 2003). As a result, the team might
hypothesize that parent-teacher reporting discrepancies reflect that children behave differently in home and school settings, and thus administer a measure to test this hypothesis. An example would be an observational measure of young children’s disruptive behavior that indicates the extent to which children express disruptive behavior when interacting with parental and nonparental adults (Wakschlag et al. 2008).

If at the end of the study the investigative team did observe parent-teacher discrepancies that reflected contextual variation in children’s oppositional behavior, then the team would use this information to interpret their findings. For example, if the inconsistent findings revealed that the parent reports suggested the intervention was effective whereas the teacher reports did not, the team would conclude that their findings suggest that the intervention effectively targeted contingencies influencing behavior in home settings (e.g., dysfunctional parent-child interactions) and not school settings (e.g., child’s reaction to teacher’s classroom behavior management strategies).

In sum, the OTM’s value lies in the guidance provided to researchers on interpreting patterns of empirical findings derived from multiple informants’ reports.

RECOMMENDATIONS FOR FUTURE RESEARCH

Research and Theoretical Implications

Primary and secondary outcome measure methodology. The OTM has a number of implications for future research and theory. First, the OTM guides researchers toward advancing a priori hypotheses as to whether they expect findings based on multiple informants’ reports to result in discrepant research conclusions. In posing hypotheses about discrepant research conclusions, the OTM encourages researchers to also conceptualize what these discrepancies represent. In contrast, current practices in controlled trials research involve designating multiple outcomes within a controlled trial in terms of their use as a primary versus secondary indicator of treatment response (De Los Reyes et al. 2011b). Importantly, we previously reviewed reasons why this strategy appears misaligned with the impetus behind taking multi-informant approaches to clinical assessment (Hunsley & Mash 2007).

In our previous illustrations of the utility in adopting the OTM in research using multiple informants ([Figure 2](#)), we discussed circumstances within which the OTM improves use and interpretation of multi-informant assessments. These improvements may occur regardless of whether assessment outcomes represent Converging Operations, or in the case of informant discrepancies, meaningful variation in behavior (Diverging Operations) or not (Compensating Operations). In turn, the OTM may increase the cost-effectiveness of multi-informant assessments and any clinical services informed by these assessments. For example, consider a study of a sample of adult patients in which patients’ and spouses’ reports taken during structured clinical interviews comprise the information used to diagnose social anxiety disorder. Here, the discrepant reports may signify that the informants vary on which contexts they base their reports of social anxiety symptoms. That is, perhaps patients base their self-reports on behaviors expressed within work settings, whereas spouses base their reports about patients on behaviors expressed within social gatherings outside of the work setting. Using Diverging Operations, a research team has a guide for using multiple informants in diagnosis to distinguish between a diagnosis of social anxiety disorder (i.e., social anxiety expressed across social interactions) and a subtype diagnosis typified by expression of symptoms within a specific social interaction (e.g., performance situations such as public speaking; see Bögels et al. 2010). Conversely, using a primary outcome strategy might lead to diagnoses that inform treatment plans that fail to represent, and thus optimally address, patients’ presenting concerns. For example, a single report might suggest administering a comprehensive treatment for
social anxiety, when multiple informants’ reports might indicate that a more focused treatment on symptoms expressed within performance settings would sufficiently reduce the patients’ concerns. Notably, a key strength of the OTM is that it yields a multi-informant strategy that eliminates the need for researchers to address informant discrepancies by designating a primary measure in advance of the study.

Constructing multi-informant measurement batteries. The OTM also has implications for informing the construction of measurement protocols within studies that include multiple informants’ reports. As mentioned previously, it is a well-accepted notion that upholding best practices in clinical assessment involves collecting reports from multiple informants (Hunsley & Mash 2007, Mash & Hunsley 2005). However, little guidance exists for researchers to decide on the number of informants on which to rely. Often the implicit assumption appears to be: Somewhere between two and as many as possible.

The OTM guides researchers toward hypothesizing whether they should expect informant discrepancies in research conclusions. Thus, in research areas within which investigative teams frequently expect to observe informant discrepancies, OTM-guided research might result in researchers constructing measurement batteries that include informants for whom reports disagree for meaningful reasons. For instance, use of the OTM to interpret commonly discrepant parent and teacher reports of children’s disruptive behavior in developmental psychopathology research might result in the construction of a standardized battery of parent, teacher, and independent observer measures. Such a battery of measures might be similar to that used in work reviewed previously to assess disruptive behavior in young children (e.g., De Los Reyes et al. 2009, Wakschlag et al. 2008). Indeed, the purpose of this battery might involve developing a consensus assessment paradigm for systematically identifying cross-contextual versus context-specific expressions of children’s disruptive behavior. Therefore, the OTM might have the positive side effect of improving researchers’ precision in selecting, using, and interpreting informants’ reports. We encourage researchers to use the OTM to both interpret informant discrepancies and develop and refine comprehensive multi-informant assessment approaches.

Interpreting patterns of findings within investigations and meta-analyses. Lastly, the OTM may encourage the development of operational definitions of converging findings among multiple informants’ reports. Indeed, we previously illustrated the RPC Model, as used in controlled trials research, as one operational definition of convergence (De Los Reyes & Kazdin 2006). However, researchers might seek to operationally define convergence at rates higher or lower than the definitions advanced by the RPC Model (De Los Reyes et al. 2011b). For example, a research area for which precision in outcome measurement is underdeveloped might be justified in setting a lower threshold for converging findings. In any event, we encourage future research to quantify the hypothesized levels of converging findings within specific literatures and develop operational definitions of converging findings to match the particular methodological parameters of studies within these literatures.

In a similar vein, a long line of research across the social and general medical sciences attests to how often studies of the same or similar phenomena yield diverging findings (e.g., treatment efficacy, genetic and environmental risk factors; Achenbach 2006, 2011; De Los Reyes & Kazdin 2005, 2006, 2009; Goodman et al. 2010; Ioannidis 2005; Ioannidis & Trikalinos 2005; Monroe & Reid 2008). It is often the case that this variation between studies is examined in relation to such factors as basic study characteristics (sample size and demographic characteristics) and methodological characteristics (informant and measure type). These factors are of particular interest in meta-analytic research (Rosenthal & DiMatteo 2001).
Yet, meta-analytic researchers vary widely in how they manage multiple outcome measures within each of the studies in a sample. For example, researchers may select a single indicator to represent a study’s effects or average the observed effects across outcome measures within the study; these practices often result in different conclusions (Matt 1989). Importantly, each of these methods also treats any variability across measures as error. Use of the OTM may address this issue. That is, systematic reviews can improve upon their ability to synthesize research evidence if studies classify their findings according to whether they reflect Converging, Diverging, or Compensating Operations. Stated another way, if the OTM leads to more reliable and valid conclusions drawn from within multiple studies, this may, in turn, improve the reliability and validity of meta-analyses, and in particular conclusions drawn from between-study comparisons (i.e., comparisons of studies that used the OTM to interpret research conclusions).

Limitations of the OTM

There are limitations to the OTM. First, as mentioned previously, using and interpreting multiple informants’ reports of a behavior may involve conducting multiple statistical tests on these reports. Under the general linear model (GLM), researchers may be hesitant to conduct multiple tests, as statistical corrections for conducting multiple tests may reduce statistical power to detect significant effects (Tabachnick & Fidell 2001). Of course, these statistical corrections are typically made to correct for multiple independent statistical tests, or tests that assume that multiple tests yield multiple independent observations. However, although multiple informants’ reports typically correspond no higher than low-to-moderate in magnitude (e.g., r’s ranging from 0.20 to 0.40; see Achenbach et al. 1987, 2005), they nonetheless often correspond with each other at statistically significant magnitudes. Thus, use of the OTM may result in researchers examining multi-informant assessment outcomes using methods such as (a) extensions of the GLM that account for correlated observations among dependent variables (e.g., generalized estimating equations; see Hanley et al. 2003) or (b) Bayesian modeling approaches (e.g., person-centered latent class models; see Bartholomew et al. 2002). Indeed, previous work indicates that these approaches can be applied to testing questions about multi-informant assessments (e.g., De Los Reyes et al. 2012b, Chilcoat & Breslau 1997, Goodman et al. 2010, Horton & Fitzmaurice 2004, Mick et al. 2000, Nomura & Chemtob 2009). In fact, two of the studies reviewed previously that provided supportive evidence for the Diverging Operations concept used these approaches (De Los Reyes et al. 2009, 2013). Therefore, we encourage future research on the OTM that applies quantitative methods for understanding variation among multiple informants’ reports.

Second, use of the OTM within a given research area requires a guide within that area for operationally defining converging research findings. With the possible exception of the RPC Model (De Los Reyes & Kazdin 2006), the extant literature lacks guidelines for operationally defining convergence. This is an important limitation in that, as mentioned previously, convergence and the thresholds used to define it may vary greatly depending on the research area. New operational definitions of convergence might come from the development of conceptual models that define convergence within specific research areas. Further, empirically based estimates of convergence might be constructed based on quantitative reviews of multi-informant correspondence (e.g., Achenbach et al. 1987, 2005). In any event, we encourage research and theory that seek to identify alternative definitions of convergence.

Third, much of the evidence reviewed previously that supports Diverging Operations comes from research on multi-informant assessments of children’s externalizing behaviors. This stems from two aspects of assessments of externalizing behavior. The first is that the informants used in these assessments are typically adult informants who vary in the contexts within which they
observe children’s externalizing behaviors (e.g., parents versus teachers; Dirks et al. 2012). The second is that a key factor that differentiates these informants (i.e., the context within which they observe behavior) can be readily tested with existing observational paradigms (Wakschlag et al. 2008). Further, assessments in other patient populations may only infrequently incorporate multi-informant assessments (e.g., adult patients; see Achenbach et al. 2005).

Psychological assessment research is ripe with opportunities to extend the evidence supporting the ability to use Diverging Operations in multi-informant assessments. For instance, adult patient self-reports of psychopathology and clinician reports about adult patients correspond in the low-to-moderate range (Achenbach et al. 2005). Further, recent longitudinal work indicates that discrepancies between informants’ reports exist across the lifespan of patients into middle age (van der Ende et al. 2012). Yet, research on multi-informant correspondence in adult psychopathology assessments has largely focused on the implications of low levels of correspondence for identifying evidence-based interventions and defining treatment response (e.g., Frank et al. 1991, Lambert et al. 1986, Ogles et al. 1990, Zimmerman et al. 2006). In fact, this work likely played a key role in researchers transitioning away from identifying treatment response using multi-informant assessments in favor of primary outcome measures (De Los Reyes et al. 2011b).

However, there may be circumstances within which informant discrepancies usefully inform diagnosis and treatment response methods in adult psychopathology assessments. As an example, consider diagnostic assessments of adulthood social anxiety disorder. Informant discrepancies may inform interpretations of assessments of adulthood social anxiety in two ways.

First, discrepancies between patient and clinician reports might reflect subtype diagnoses in adulthood social anxiety assessments. Specifically, as mentioned previously, patients can be empirically distinguished based on symptom expression and impairment evident across multiple settings versus symptom expression and impairment evident only within performance settings (e.g., public speaking; Bögels et al. 2010). Further, patients’ self-reports of internalizing difficulties often yield low-to-moderate levels of correspondence with clinicians’ reports about patients’ internalizing difficulties (Achenbach et al. 2005). Patients and clinicians likely vary in the contexts on which they base their social anxiety reports. For instance, patient self-reports may reflect social anxiety symptoms expressed within home and work settings. In contrast, clinician reports about patients may reflect social anxiety based on patient self-reports as well as their clinical observations of the patient. Clinician reports may be meaningfully distinguished from patient reports in that they incorporate symptom expressions using information from a setting (i.e., the clinical setting) that patients likely do not incorporate into their own self-reports. At the same time, informant pairs may vary in how much their reports correspond with other informants’ reports (e.g., De Los Reyes et al. 2011a). That is, some patients’ reports do not correspond with other informants’ reports, and some patients’ reports correspond to a considerable extent with other informants’ reports (De Los Reyes et al. 2011c,d). Thus, circumstances within which patient and clinician reports correspond on questionnaire measures of social anxiety may indicate a strong likelihood of a social anxiety disorder diagnosis endorsed on a structured interview (i.e., symptom expression and impairment evidence across multiple settings). Conversely, low correspondence between reports may indicate a strong likelihood of a diagnosis specific to symptom expression and impairment within performance settings. Therefore, the lack of correspondence between patient and clinician reports could serve as an external indicator for corroborating subtype diagnoses of social anxiety disorder.

Second, a number of standardized behavioral tasks are available to assess associated impairments germane to social anxiety, such as tasks that assess social skills deficits (e.g., Beidel et al. 1989, 2010; Heimberg et al. 1990; Curran 1982; Turner et al. 1986, 1994). Further, similar to cross-contextual assessments of children’s disruptive behavior (Wakschlag et al. 2008), behavioral assessments of adulthood social skills deficits vary in the contexts within which they assess behaviors indicative
of social skills deficits (e.g., public speaking and one-on-one social interactions). Therefore, patterns of consistency and inconsistency in social skills deficits exhibited across these tasks could also be used to corroborate the utility of discrepancies between patient and clinician reports as indicators of subtype diagnoses in adulthood social anxiety disorder assessments. In sum, we encourage (a) future research on factors other than context that meaningfully explain informant discrepancies and (b) hypothesis-driven research seeking to understand whether meaningful variation exists in discrepant reports of behaviors other than childhood externalizing behaviors.

CONCLUSIONS

One of the greatest challenges facing clinical science involves drawing proper research conclusions when multiple informants’ reports about clinically meaningful behaviors disagree. Exponentially increasing these challenges is that the current paradigm for interpreting research findings leads researchers to draw indications of the strength of evidence contingent upon the convergence of research findings. Yet, few studies observe consistent findings among informants’ reports. Thus, the current paradigm (i.e., Converging Operations) does not allow researchers to draw strong inferences from inconsistent findings.

At the beginning of this review, we argued that these realities of assessment in clinical science have resulted in what we termed the Grand Discrepancy in multi-informant assessment. Specifically, researchers have an abstract notion that multi-informant assessments capitalize on the unique perspectives of informants and their observations of clinically relevant behaviors. However, observations of discrepant assessment outcomes within multi-informant assessments often prompt researchers to use statistical and methodological techniques that treat these informant discrepancies as measurement error. Importantly, we reviewed a variety of circumstances within which informant discrepancies reveal meaningful divergence or variability in clinically relevant behaviors (e.g., across contexts within which such behaviors may be expressed). Under these circumstances, using techniques that treat discrepancies as error undermines the principles underlying multi-informant approaches to clinical assessment. Therefore, researchers require guides for interpreting patterns of both converging and diverging findings from multiple informants’ reports.

To address the Grand Discrepancy in multi-informant assessment, we advanced a guiding framework that researchers can use to systematically investigate the convergence or divergence of research findings derived from multi-informant assessments. This framework may result in improvements in the veracity of research conclusions drawn from multi-informant assessments. For instance, this framework may encourage judicious applications of techniques that treat informant discrepancies as measurement error and guide researchers toward meaningful interpretations of research findings when informants’ reports meaningfully diverge. However, these improvements will only come if researchers draw from the informant discrepancies literature—a literature spanning multiple decades—to form hypotheses about whether findings based on multiple informants’ reports will converge or diverge. If researchers hypothesize divergence, they can subsequently form and test hypotheses about the reasons for this divergence. We encourage clinical researchers to incorporate expectations of informant discrepancies and the reasons why they might occur when making decisions about hypothesis testing, study design, and data interpretation.

SUMMARY POINTS

1. Clinical assessments of patients across the lifespan (e.g., children, adolescents, young adults, and elderly adults) often incorporate reports from multiple informants.
2. Researchers often justify taking multi-informant approaches to clinical assessment based on the idea that informants each have unique and valid perspectives when observing the behaviors about which they provide reports.

3. When researchers observe informant discrepancies, they often address them using methodological and statistical techniques that assume discrepancies reflect measurement error.

4. Recent research and theory in clinical assessment indicate that informant discrepancies often cannot be interpreted as reflections of measurement error.

5. Researchers’ interpretations of informant discrepancies as measurement error stem from Converging Operations: a set of measurement conditions for interpreting patterns of findings based on the consistency within which findings yield similar conclusions.

6. Difficulties with interpreting informant discrepancies stem from a lack of options for interpreting such discrepancies other than Converging Operations.

7. This review advances a framework (Operations Triad Model) that provides researchers with guides for interpreting multi-informant assessment outcomes, depending on whether the outcomes converge on the same conclusion or diverge toward distinct conclusions.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We thank Susan Nolen-Hoeksema, the Editorial Board of the Annual Review of Clinical Psychology, Carl W. Lejuez, Matthew K. Nock, Thomas S. Wallsten, and Eric A. Youngstrom for their helpful and insightful comments on and discussions about previous versions of this review. We also thank Michael Van Wie and Erika Roberge for their assistance with literature reviews conducted in preparation of this review. This review was partially supported by an NRSA Predoctoral Award to Sarah Thomas from the National Institute on Drug Abuse (F31 DA033913-01).

LITERATURE CITED

www.annualreviews.org • Multiple Informants’ Reports

Contents

Evidence-Based Psychological Treatments: An Update and a Way Forward
David H. Barlow, Jacqueline R. Bullis, Jonathan S. Comer, and Amantia A. Ametaj ... 1

Quitting Drugs: Quantitative and Qualitative Features
Gene M. Heyman ... 29

Integrative Data Analysis in Clinical Psychology Research
Andrea M. Hussong, Patrick J. Curran, and Daniel J. Bauer ... 61

Network Analysis: An Integrative Approach to the Structure of Psychopathology
Denny Borsboom and Angélique O.J. Cramer ... 91

Principles Underlying the Use of Multiple Informants’ Reports
Andres De Los Reyes, Sarah A. Thomas, Kimberly L. Goodman, and Shannon M.A. Kundey ... 123

Ambulatory Assessment
Timothy J. Trull and Ulrich Ebner-Priemer ... 151

Endophenotypes in Psychopathology Research: Where Do We Stand?
Gregory A. Miller and Brigitte Rockstroh ... 177

Fear Extinction and Relapse: State of the Art
Bram Vervliet, Michelle G. Craske, and Dirk Hermans ... 215

Social Anxiety and Social Anxiety Disorder
Amanda S. Morrison and Richard G. Heimberg ... 249

Michelle G. Newman, Sandra J. Llera, Thane M. Erickson, Amy Przeworski, and Louis G. Castonguay ... 275

Dissociative Disorders in DSM-5
David Spiegel, Roberto Lewis-Fernández, Ruth Lanius, Eric Vermetten, Daphne Simeon, and Matthew Friedman ... 299
Depression and Cardiovascular Disorders
 Mary A. Whooley and Jonathan M. Wong ... 327

Interpersonal Processes in Depression
 Jennifer L. Hames, Christopher R. Hagan, and Thomas E. Joiner 355

Postpartum Depression: Current Status and Future Directions
 Michael W. O’Hara and Jennifer E. McCabe .. 379

Emotion Deficits in People with Schizophrenia
 Ann M. Kring and Ori Elis ... 409

Cognitive Interventions Targeting Brain Plasticity in the Prodromal and Early Phases of Schizophrenia
 Melissa Fisher, Rachel Loewy, Kate Hardy, Danielle Schlosser, and Sophia Vinogradov .. 435

Psychosocial Treatments for Schizophrenia
 Kim T. Mueser, Frances Deavers, David L. Penn, and Jeffrey E. Cassisi 465

Stability and Change in Personality Disorders
 Leslie C. Morey and Christopher J. Hopwood 499

The Relationship Between Personality Disorders and Axis I Psychopathology: Deconstructing Comorbidity
 Paul S. Links and Rahel Eynan ... 529

Revisiting the Relationship Between Autism and Schizophrenia:
 Toward an Integrated Neurobiology
 Nina de Lacy and Bryan H. King ... 555

The Genetics of Eating Disorders
 Sara E. Trace, Jessica H. Baker, Eva Peñas-Lledó, and Cynthia M. Bulik 589

Neuroimaging and Other Biomarkers for Alzheimer’s Disease:
 The Changing Landscape of Early Detection
 Shannon L. Risacher and Andrew J. Saykin 621

How Can We Use Our Knowledge of Alcohol-Tobacco Interactions to Reduce Alcohol Use?
 Sherry A. McKee and Andrea H. Weinberger 649

Interventions for Tobacco Smoking
 Tanya R. Schlam and Timothy B. Baker ... 675

Neurotoxic Effects of Alcohol in Adolescence
 Joanna Jacobus and Susan F. Tapert ... 703

Socioeconomic Status and Health: Mediating and Moderating Factors
 Edith Chen and Gregory E. Miller .. 723
School Bullying: Development and Some Important Challenges

Dan Olweus .. 751

The Manufacture of Recovery

Joel Tupper Braslow .. 781

Indexes

Cumulative Index of Contributing Authors, Volumes 1–9 811
Cumulative Index of Articles Titles, Volumes 1–9 ... 815

Errata

An online log of corrections to Annual Review of Clinical Psychology articles may be found at http://clinpsy.annualreviews.org