Cognitive Vulnerability and Frontal Brain Asymmetry: Common Predictors of First Prospective Depressive Episode

Robin Nusslock, Alexander J. Shackman, Eddie Harmon-Jones, Lauren B. Alloy, James A. Coan, and Lyn Y. Abramson

Online First Publication, March 7, 2011. doi: 10.1037/a0022940

CITATION
Cognitive Vulnerability and Frontal Brain Asymmetry:
Common Predictors of First Prospective Depressive Episode

Robin Nusslock
Northwestern University
Alexander J. Shackman
University of Wisconsin–Madison
Eddie Harmon-Jones
Texas A&M University
Lauren B. Alloy
Temple University
James A. Coan
University of Virginia
Lyn Y. Abramson
University of Wisconsin–Madison

The hopelessness theory of depression proposes that individuals with a depressogenic cognitive style are more likely to become hopeless and experience depression following negative life events. Although the neurophysiological underpinnings of cognitive style remain speculative, research indicates that decreased relative left frontal brain electrical activity holds promise as a traitlike marker of depression. This begs the question: Do measures of depressogenic cognitive style and resting frontal brain asymmetry index a common vulnerability? The present study provides preliminary support for this hypothesis. At baseline assessment, increased cognitive vulnerability to depression was associated with decreased relative left frontal brain activity at rest in individuals with no prior history of, or current, depression. Following baseline assessment, participants were followed prospectively an average of 3 years with structured diagnostic interviews at 4-month intervals. Both cognitive vulnerability and asymmetric frontal cortical activity prospectively predicted onset of first depressive episode in separate univariate analyses. Furthermore, multivariate analyses indicated that cognitive vulnerability and frontal asymmetry represented shared, rather than independent, predictors of first depression onset.

Keywords: cognitive vulnerability, frontal EEG, depression

Supplemental materials: http://dx.doi.org/10.1037/a0022940.supp
evoking stimuli) are associated with increased relative left frontal activity (Coan & Allen, 2004). By contrast, individuals with depression show decreased relative left frontal activity at rest during both depressive and euthymic states (Thibodeau, Jorgensen, & Kim, 2006). These data have been interpreted in the context of a vulnerability–stress framework in which resting frontal asymmetry reflects a state-independent risk factor for depression (Coan & Allen, 2004). In line with this view, abnormal regional hemispheric asymmetries have been observed in offspring of depressed individuals who have yet to experience a depressive episode themselves (Bruder et al., 2005; Dawson, Frey, Panagiotides, Osterling, & Hessl, 1997).

Abramson et al. (2002) proposed a conceptual integration of the hopelessness theory and approach–withdrawal model of depression, arguing that “hopelessness, the expectation to which cognitively vulnerable individuals are predisposed, may represent the cognitive, affective, and behavioral manifestations of an inactive approach system” (p. 287). From this perspective, both heightened cognitive vulnerability and decreased relative left frontal activity serve as shared or common risk factors for experiencing an excessive decrease in approach-related affect or behavior (i.e., depression) following negative events. From the cognitive perspective, when vulnerable individuals encounter stressful events, they generate negative inferences about their future and self-worth. These inferences lead to hopelessness about achieving current and future goals, which leads to a disengagement from approach-oriented action and symptoms of depression. Consistent with this view, cognitive vulnerability interacts with life stress to predict a reduction in goal-directed behavior and a concomitant increase in withdrawal or depressive symptoms (Haeffel, Abramson, Brazy, & Shah, 2008). Cognitively vulnerable individuals are also more likely to disengage from approach-oriented behaviors during laboratory stressors (Alloy, Peterson, Abramson, & Seligman, 1984).

From the approach–withdrawal perspective, decreased relative left frontal activity at rest reflects a propensity to experience an excessive decrease in approach-related affect (i.e., depression) or increase in withdrawal-related affect following negative events (Coan & Allen, 2004). Thus, both the hopelessness and approach–withdrawal models outline a framework in which vulnerable individuals are prone to an excessive decrease in appetitive motivation, which is reflected in depressive symptoms. Given the conceptual overlap between these two models, an important and untested hypothesis is that there is a meaningful relationship between cognitive vulnerability, as defined by hopelessness theory (Abramson et al., 1989), and frontal asymmetry. The present study provided the first test of this hypothesis.

First, we examined the relationship between resting frontal asymmetry and individual differences in cognitive vulnerability to depression at baseline assessment in individuals with no history of depression. Participants with no prior depression were sampled to examine the relationship between frontal asymmetry and cognitive vulnerability among individuals whose neural and cognitive profiles were unaffected by previous depressive episodes (as in the scar hypothesis; Lewinsohn, Steinmetz, Larson, & Franklin, 1981). We predicted that increased cognitive vulnerability to depression would correlate with decreased relative left frontal activity at rest.

Second, we examined whether cognitive vulnerability and resting frontal asymmetry prospectively predicted onset of first depressive episode over a 3-year follow-up period. At the univariate level, we predicted that both heightened cognitive vulnerability and decreased relative left frontal activity at rest would prospectively predict a greater likelihood of a first depressive episode. Multivariate modeling was then employed to test the hypothesis proposed by Abramson et al. (2002) that cognitive vulnerability and frontal asymmetry represent common, as opposed to independent, predictors of depression onset.

Given Abramson et al.’s (2002) proposed conceptual integration of the approach–withdrawal and hopelessness models, hypothesis testing focused on the cognitive vulnerability outlined in hopelessness theory (Abramson et al., 1989) and indexed by the Cognitive Style Questionnaire negative events composite (CSQ-N; Alloy et al., 2000). The CSQ-N assesses an individual’s tendency to make negative inferences for cause, consequence, and self, in response to negative events, as specified in the hopelessness theory. However, to assess the specificity between frontal asymmetry and the cognitive vulnerability outlined in hopelessness theory, exploratory analyses were conducted examining relationships between frontal asymmetry and other relevant indices of cognitive style and temperament. Of particular interest is whether frontal asymmetry will be specifically related to CSQ-N scores with respect to the prospective onset of first depressive episode, or whether it will also be related to inferential style for positive life events, as indexed by the CSQ positive events composite (CSQ-P; Alloy et al., 2000). Given that inferential style for positive events has been associated more with time to recover from a depressive episode (Needles & Abramson, 1990), as opposed to depression onset, we predicted this relationship would be specific to CSQ-N scores. Moreover, the CSQ-P assesses postgoal responses and not the pregoal, appetitive responsiveness tapped by asymmetric frontal cortical activity (Harmon-Jones, Harmon-Jones, Fearn, Sigelman, & Johnson, 2008); thus, it should not be related to asymmetric frontal cortical activity.

Method

Participants

Participants were a subgroup of healthy control participants in the Longitudinal Investigation of Bipolar Spectrum (LIBS) Project. At recruitment into the LIBS Project, healthy control participants were University of Wisconsin students (M_age = 20.32 years, SD = 1.25) and required to have no history of affective pathology, as indexed by both the General Behavior Inventory (GBI; Depue et al., 1981; GBI-Hypomania-Biphasic subscale score < 13 and GBI–Depression subscale score < 11) and a Schedule for Affective Disorders and Schizophrenia–Lifetime (SADS-L; Endicott & Spitzer, 1978) interview.

Of the 110 healthy control participants recruited at the Wisconsin site, 56 completed baseline EEG recording and cognitive measures for the present study (baseline data collection for the present study occurred an average 14 months following initial recruitment into the LIBS Project). Participants were further excluded if they (a) were not right-handed (>32; Chapman & Chapman, 1987), (b) met Research Diagnostic Criteria (RDC; Spitzer, Endicott, & Robins, 1978) for a major or minor depressive episode during the 14-month period from initial recruitment into the LIBS Project to baseline EEG or cognitive data collection for the present study, (c) had unusable data in frontal EEG electrodes, or (d) failed
to provide at least 1 year of diagnostic data during the follow-up period. Together these criteria yielded 40 (17 female) participants who provided data for the present study. None were taking psychotropic medications or had a comorbid anxiety or alcohol or substance use disorder at baseline assessment. There were no differences in age, gender, CSQ-N, CSQ-P, or Behavioral Inhibition System/Behavioral Activation System (BIS/BAS; Carver & White, 1994) scale scores between healthy control LIBS participants who did and did not complete data collection for the present study (ps > .24). Informed written consent was obtained at the EEG session.

Procedure
At baseline, participants completed EEG recordings, the Beck Depression Inventory (BDI; Beck, Rush, Shaw, & Emery, 1979), the CSQ (Alloy et al., 2000), and other relevant measures of cognitive style and temperament. Participants then were followed prospectively for an average of 3 years with diagnostic interview assessments every 4 months via the Schedule for Affective Disorders and Schizophrenia–Change (SADS-C; Spitzer & Endicott, 1978) interview.

Measures
CSQ (Alloy et al., 2000). The CSQ consists of 12 hypothetical negative and 12 hypothetical positive events. Respondents write down one cause for each event and rate the degree to which the cause of the event is stable and global. In addition, they rate the likelihood that further negative consequences will result from the occurrence of the negative event (e.g., “How likely is it that the other person no longer wanting a romantic relationship with you will lead to other negative things happening to you?”), or positive consequences from the occurrence of the positive event, and the implication of the event for their self-worth (e.g., “To what degree does your receiving a negative evaluation of your job performance mean to you that you are flawed in some way?”). We computed composite scores for negative events (CSQ-N) and positive events (CSQ-P) based on a sum of stability, globality, consequences, and self dimensions for each event type. Higher CSQ-N and CSQ-P scores indicate more negative and positive cognitive styles, respectively. Mean and Cronbach’s alpha in the present study were 3.7 (SD = 0.70) and .87 for CSQ-N and 5.2 (SD = 0.70) and .93 for CSQ-P, respectively. As expected, CSQ-P scores were higher than CSQ-N scores in the present study, t(38) = 9.65, p < .001.

GBI (Depue et al., 1981). The GBI contains 73 items assessing affective experiences and their intensity, duration, and frequency and is composed of Depression and Hypomania-Biphasic scores. Mean and Cronbach’s alpha at initial recruitment were 1.49 (SD = 2.06) and .90 for the Depression subscale and 2.49 (SD = 2.92) and .92 for the Hypomania-Biphasic subscale, respectively.

BDI (Beck et al., 1979). The BDI is a 21-item self-report inventory used to assess initial levels of depressive symptoms. Mean and Cronbach’s alpha in the present study were 2.51 (SD = 2.40) and .81, respectively.

SADS-C (Spitzer & Endicott, 1978). The SADS-C is a semistructured diagnostic interview that assesses current and lifetime history of Axis I diagnoses. Interviewers were blind to GBI scores. For both SADS-L and SADS-C, consensus Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM–IV; American Psychiatric Association, 1994) and RDC diagnoses were determined by a three-tiered standardized review procedure involving project interviewers, senior diagnosticians, and an expert psychiatric diagnostic consultant. An interrater reliability study based on 57 jointly rated SADS-L interviews on healthy control participants from the LIBS Project yielded kappas greater than .96 for both DSM–IV major and RDC major and minor depressive episodes.

SADS-C (Spitzer & Endicott, 1978). The SADS-C was administered at 4-month intervals during prospective follow-up to assess onset of Axis I psychopathology. The present study used RDC diagnoses to assess both major and minor depressive episodes. Major depressive episodes were defined by (a) depressed mood or loss of interest greater than or equal to 90% of waking hours, (b) four or more additional major depressive symptoms, and (c) significant distress or impairment. A definite major depressive episode met these criteria for at least 2 weeks and a probable major depressive episode for at least 1 week. Minor depressive episodes were defined by (a) depressed mood or loss of interest greater than or equal to 50% of waking hours, (b) two or more additional depressive symptoms, and (c) significant distress or impairment for at least 1 week. In the present study, both major and minor episodes were considered evidence of first-time depression. An interrater reliability study based on 52 jointly rated SADS-C interviews on healthy control participants from the LIBS Project yielded kappas greater than .92 for both DSM–IV major and RDC major and minor depressive episodes.

Exploratory Measures
For brevity, we provide an abbreviated description of the cognitive/temperamental measures used in exploratory analyses. See supplemental materials for detailed description.

Sociotropy–Autonomy Scale (Beck, Epstein, Harrison, & Emery, 1983). The Sociotropy–Autonomy Scale includes an Autonomy scale measuring valuing achievement, mobility, and freedom and a Sociotropy scale measuring valuing of attachment and fears of abandonment.

Dysfunctional Attitude Scale (Weissman & Beck, 1978). The Dysfunctional Attitude Scale assesses dysfunctional beliefs regarding concerns about others’ approval and performance expectations.

Depressive Experiences Questionnaire (Blatt, D’Afflitti, & Quinlan, 1976). The Depressive Experiences Questionnaire measures the three depressive personality styles: Dependency, Self-Criticism, and Efficacy. We used the Dependency and Self-Criticism subscales.

Response Style Questionnaire (RSQ; Nolen-Hoeksema & Morrow, 1991). The RSQ consists of Rumination and Distractibility scales, each designed to assess characteristic styles of responding to or regulating dysphoria.

BIS/BAS (Carver & White, 1994). The BIS/BAS scale assesses self-reported sensitivity of the BAS and the BIS.

EEG recording and reduction. Eight 60-s eyes-open/eyes-closed trials were collected in a counterbalanced sequence with 16 electrodes (A1/A2, F3/F4, F7/F8, C3/C4, T3/T4, T5/T6, P3/P4, Cz, Pz) grounded at Fz. The online reference was the left earlobe
(A1), and data were recorded from the right earlobe (A2), enabling
computation of an offline averaged-ears reference (impedances <
5kΩ; homologs ± 1kΩ). Data were filtered (0.1–100 Hz; 60 Hz
notch-filter enabled), amplified, and digitized (500 Hz).

The EEG and electrooculogram signals were visually scored,
and portions of data containing aberrant eye, muscle movements,
or other sources of artifact were removed (data from all channels
were removed at that point). Vertical electrooculogram was then
used in a regression-based artifact correction of the EEG (Sem-
litzsch, Anderer, Schuster, & Presslich, 1986; another visual inspect-
ion ensured that no aberrations remained). We used only the
regression-based artifact correction for removing clearly defined
eyeblinks. All nonblink horizontal and vertical eye movement, as
well as data containing aberrant muscle movement, was manually
removed based on visual inspection of the data. Derived averaged-
ears reference data were used for further data reduction. Artifact-
free epochs (1.024 s) were Hamming windowed (75% overlap),
and power spectral density (µV²/Hz) was computed for the alpha
band (8–13 Hz) across eyes-open/eyes-closed for each channel.
Power densities were log-transformed and asymmetry indices
\[\ln(\text{right}) – \ln(\text{left}) \text{ alpha power}\] computed. Because alpha power is
inversely related to cortical activity (Coan & Allen, 2004), higher
scores indicate greater relative left-hemisphere activity. Hypothe-
sis testing focused on frontal sites, consistent with prior research
(Thibodeau et al., 2006).

We averaged alpha power in F3/F7 into a “left frontal region”
and F4/F8 into a “right frontal region” and computed a composite
frontal asymmetry index as follows: \[\ln(\text{mean of F4/F8}) – \ln(\text{mean}
of F3/F7)\]. We used a composite frontal asymmetry index (a)
because we did not have separate hypotheses for mid- (F3/F4) and
lateral-frontal (F7/F8) electrodes, (b) because of the high correla-
tion between mid- and lateral-frontal regions \((r_s > .97)\), and (c) to
minimize Type I error by reducing number of statistical analyses.
Across electrode pairs, mean Cronbach’s alpha for eight 1-min
recordings was .93.

Results

Relations Between Cognitive Vulnerability
and Frontal Asymmetry

In line with prediction, individuals with greater CSQ-N
scores (i.e., greater cognitive vulnerability) had decreased rela-
tive left frontal EEG activity at baseline, \(r(38) = -.41, p = .01\) (see Table 1 and Figure 1A).\(^1\) This relationship was main-
tained after controlling for baseline BDI scores, \(r(37) = -.42, p = .01\) (see table in supplemental materials). As predicted, the
relationship between CSQ-N scores and hemispheric asymme-
try was specific to the composite frontal region (for nonfrontal
sites, \(p_s > .26\); see Figure 1B).

Cognitive Vulnerability, Frontal Asymmetry,
and First Depressive Episode Onset

All prospective analyses involving onset of first depressive
episode controlled for BDI scores at baseline assessment. Thirteen
of the 40 participants developed a first-ever depressive episode
over the 3-year follow-up (three participants had an RDC major
depressive episode, and 10 had an RDC minor depressive episode).
Consistent with prediction, logistic regression indicated that decreased
relative left frontal activity at baseline was associated with a greater
probability of a first prospective depressive episode during the
follow-up period \((p = .02; \text{see Table 2})\).\(^2\) Furthermore, a separate
logistic regression analysis indicated that increased CSQ-N scores
were associated with a greater probability of having a first depressive
episode during the follow-up period \((p = .04; \text{see Table 2})\).

To examine whether frontal asymmetry and cognitive vulnera-
bility represented common or independent predictors of first de-
pressive episode, we conducted a third logistic regression with
both frontal asymmetry and CSQ-N scores entered simultaneously
as predictors. In line with prediction, the omnibus model was
significant \((p = .02; \text{see Table 2})\), indicating that frontal EEG and
CSQ-N scores collectively predicted first depressive episode.
However, neither frontal asymmetry \((p = .21)\) nor CSQ-N scores
\((p = .14)\) remained independent predictors of first depressive
episode. Furthermore, the interaction between frontal asymmetry
and CSQ-N scores in predicting depression onset was nonsignifi-
cant \((p = .10)\). Collectively, this suggests that resting frontal
asymmetry and cognitive vulnerability may represent common,
rather than independent, predictors of depression onset.\(^3\)

Exploratory Analyses of Relationships Between
Frontal Asymmetry and Other Indices of Cognitive
Style and Temperament

No relation was observed between frontal asymmetry and infer-
ential style for positive events, as indexed by the CSQ-P \((p = .94; \text{see}
Table 1)\). Moreover, the correlation between frontal asymmetry
and CSQ-N scores was significantly different from the correlation
between frontal asymmetry and CSQ-P scores \((Z = 1.96, p < .05)\),
suggesting that the relationship between cognitive vulnerability
and frontal asymmetry was specific to people’s inferences for
negative life events. Individuals with greater RSQ–Rumination
scores had decreased relative left frontal activity \((p = .02)\) and
increased CSQ-N scores \((p = .05)\). However, there was no rela-
tionship between RSQ–Ruminiation scores and first depressive
episode onset. All exploratory analyses were replicated after control-
ling for BDI scores at baseline assessment (see table in supplemental
materials). As in past research, there was a positive relationship
between frontal asymmetry and BAS–Total scores. However, in the
present sample, this relationship was not significant.

Discussion

Consistent with prediction, decreased relative left frontal activ-
ity at rest was associated with increased cognitive vulnerability to

\(^1\) Comparable effects were observed for the relationship between CSQ-N
scores and frontal asymmetry separately at both the mid- \((r(38) = -.38, p = .02)\), and lateral-frontal region, \(r(38) = -.36, p = .02)\).

\(^2\) Relations between hemispheric asymmetry and first depressive episode
onset was specific to the frontal region (for nonfrontal sites, \(p_s > .38\)).

\(^3\) We conducted separate logistic regression analyses of cognitive vulner-
bility, frontal asymmetry, and first depressive episode onset at both the
mid- and lateral-frontal region. Results for these analyses at the midfrontal
region were equivalent to the composite frontal asymmetry index. By
contrast, there was no significant relationship between lateral-frontal asym-
mety and first depressive episode \((B = -2.59, \chi^2 = 1.42, p = .23)\).
depression (i.e., heightened CSQ-N scores) at baseline assessment among euthymic individuals with no prior history of depression, ruling out the possibility that this relation is a by-product of previous depressive episodes (i.e., scar hypothesis; Lewinsohn et al., 1981). The relationship between cognitive vulnerability and frontal asymmetry was specific to people’s inferences for negative life events, as no relation was observed between frontal asymmetry and inferential style for positive events (CSQ-P). Also consistent with prediction, both decreased left frontal activity and heightened CSQ-N scores, in separate regression analyses, prospectively predicted a greater likelihood of having a first-ever depressive episode during the follow-up period. This is the first study demonstrating that decreased relative left frontal activity serves as a risk factor for the prospective onset of first depressive episode. Finally, we found evidence that resting frontal asymmetry and cognitive vulnerability serve as common, as opposed to independent, predictors of first

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>CSQ-N</td>
<td>-.41**</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>CSQ-P</td>
<td>.02</td>
<td>.05</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DEP*</td>
<td>-.39*</td>
<td>.35*</td>
<td>-.03</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DEQ-DEP</td>
<td>-.04</td>
<td>.21</td>
<td>.21</td>
<td>.30</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DEP-SC</td>
<td>-.05</td>
<td>.31*</td>
<td>.02</td>
<td>.04</td>
<td>-.30</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RSQ-R</td>
<td>-.09</td>
<td>.04</td>
<td>.24</td>
<td>-.15</td>
<td>-.04</td>
<td>-.24</td>
<td>-.18</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSQ-D</td>
<td>-.14</td>
<td>.37*</td>
<td>.16</td>
<td>.31</td>
<td>.37*</td>
<td>.47**</td>
<td>.26</td>
<td>-.31</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS-T</td>
<td>.10</td>
<td>.27</td>
<td>.11</td>
<td>.35*</td>
<td>.38</td>
<td>.15</td>
<td>.24</td>
<td>.39*</td>
<td>.72**</td>
<td>.25</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS-AO</td>
<td>.16</td>
<td>.29</td>
<td>-.03</td>
<td>.21</td>
<td>.44**</td>
<td>.30</td>
<td>.34*</td>
<td>-.18</td>
<td>.68**</td>
<td>.42**</td>
<td>.51**</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS-AUT</td>
<td>-.19</td>
<td>-.07</td>
<td>.12</td>
<td>-.15</td>
<td>-.51**</td>
<td>.20</td>
<td>.03</td>
<td>.36*</td>
<td>-.22</td>
<td>.04</td>
<td>-.38*</td>
<td>-.20</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS</td>
<td>.14</td>
<td>.11</td>
<td>.32*</td>
<td>.11</td>
<td>.01</td>
<td>-.09</td>
<td>-.14</td>
<td>.28</td>
<td>-.22</td>
<td>-.14</td>
<td>-.27</td>
<td>-.27</td>
<td>-.27</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIS</td>
<td>-.21</td>
<td>.29</td>
<td>.13</td>
<td>.15</td>
<td>.43**</td>
<td>-.02</td>
<td>.23</td>
<td>.03</td>
<td>.27</td>
<td>.13</td>
<td>.25</td>
<td>.38*</td>
<td>-.14</td>
<td>.13</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>BDI</td>
<td>.08</td>
<td>.13</td>
<td>.12</td>
<td>.05</td>
<td>.19</td>
<td>.33*</td>
<td>.23</td>
<td>.08</td>
<td>.15</td>
<td>.23</td>
<td>-.14</td>
<td>.20</td>
<td>.20</td>
<td>-.03</td>
<td>-.02</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. FEA = composite frontal electroencephalographic asymmetry [(mean of F4/F8)−ln(mean of F3/F7)]; CSQ-N = negative composite of the Cognitive Style Questionnaire; CSQ-P = Cognitive Style Questionnaire positive composite; DEP = prospective depressive episode; DEQ-DEP = Dependency subscale from the Depressive Experiences Questionnaire; DEQ-SC = Self-Criticism subscale from the Depressive Experiences Questionnaire; RSQ-R = Rumination subscale from the Response Style Questionnaire; RSQ-D = Distraction subscale from the Response Style Questionnaire; DAS-T = Total scale from the Dysfunctional Attitude Scale; DAS-PE = Performance Evaluation subscale from Dysfunctional Attitude Scale; DAS-AO = Approval by Others subscale from the Dysfunctional Attitude Scale; SAS-SOC = Sociotropy subscale from the Sociotropy–Autonomy Scale; SOC-AUT = Autonomy subscale from the Sociotropy–Autonomy Scale; BAS = Total scale from the Behavioral Approach System Sensitivity scale; BIS = Total scale from the Behavioral Inhibition System Sensitivity scale; BDI = Beck Depression Inventory.

* 1 = yes, 0 = no.
** p < .05. *** p < .01.

Figure 1. (A) Scatterplot of the correlation between resting frontal asymmetry [ln(mean of F4/F8)−ln(mean of F3/F7)] and Cognitive Style Questionnaire negative events composite (CSQ-N) scores. Lower electroencephalographic (EEG) asymmetry scores reflect reduced relative left frontal activity. Higher CSQ-N scores reflect greater cognitive vulnerability for depression. (B) Topographic map of the distribution of correlations between frontal asymmetry and CSQ-N scores. As predicted, the relation between frontal asymmetry and CSQ-N scores is specific to the frontal region (values for nonfrontal indices, r > .26).
depressive episode. When both frontal EEG and CSQ-N scores were simultaneously entered into a regression model, the overall model predicted depression onset; however, neither frontal asymmetry nor CSQ-N scores remained significant as independent predictors.

An overarching objective of this study was to facilitate more dialogue between cognitive and biological models of psychopathology. Abramson et al. (2002) conceptually initiated this integration by speculating that cognitive styles that predispose an individual to hopelessness, as specified in the hopelessness theory (Abramson et al., 1989), should be related to biological vulnerabilities associated with deficits in approach system activity. The present study provides support for this perspective, suggesting that increased cognitive vulnerability and frontal asymmetry may reflect common predictors of depression onset. Exploratory analyses indicating that heightened rumination scores were associated with both decreased relative left frontal activity and increased CSQ-N scores are also in line with a conceptual integration of the hopelessness theory and approach–withdrawal model. As noted by Abramson et al. (2002), high levels of rumination or perseverative attention may cause a person to have difficulty disengaging from negative events, resulting in a decrease in approach-related motivation and a concomitant increase in symptoms of hopelessness and depression.

Three limitations of the current study represent challenges for future research. First, both the hopelessness (Abramson et al., 1989) and approach–withdrawal models (Coan & Allen, 2004) take a vulnerability–stress framework in which vulnerable individuals are at higher risk for depression following negative events. Future studies should examine the role of life events in the relationship between cognitive vulnerability, frontal asymmetry, and depression onset.

Second, the cognitive vulnerability specified in the hopelessness theory puts an individual at risk for a particular subtype of depression, referred to as hopelessness depression (Abramson et al., 1989). Symptoms of hopelessness depression include sadness, decreased initiation of responses, low energy, apathy, and psychomotor retardation, all of which reflect decreased approach motivation (Abramson et al., 2002; Haeffel et al., 2008). Because we did not assess these depressive symptoms prospectively, we were unable to examine whether frontal asymmetry predicted the onset of hopelessness depression specifically. Future studies should examine this in tests of the integration of the hopelessness theory and approach–withdrawal model.

Finally, the majority of depressive episodes observed in this study were minor episodes. Further research is needed to examine the relationship between frontal asymmetry and cognitive vulnerability in the context of severe depression onset.

References

Cognitive Vulnerability, Frontal Brain Asymmetry
Supplemental Materials

Exploratory Measures

Sociotropy-Autonomy Scale (SAS; Beck et al., 1983). The SAS is a 60-item questionnaire designed to assess Beck’s (1987) depressive personality modes, with 30 items each on the Sociotropy (e.g., “I am afraid of hurting other people’s feelings”) and Autonomy (e.g., “It is more important to get a job done than to worry about other people’s reactions”) subscales. Autonomy assesses valuing of achievement, mobility, and freedom from control, whereas Sociotropy measures valuing of attachment and fears of abandonment and rejection by others. Each item is rated on 5-point scales (0%, 25%, 50%, 75%, and 100%). The Sociotropy and Autonomy scales have shown good internal consistency (α = 0.90 and 0.93, respectively) and high retest reliability (Beck et al., 1983; Zuroff et al., 2004). Mean and Cronbach’s alpha in the present study were 3.06 (SD = .50) and .91 for Sociotropy and 3.22 (SD = .40) and .92 for Autonomy.

Dysfunctional-Attitudes Scale (DAS; Weissman & Beck, 1978). The DAS is a 40-item questionnaire that assesses dysfunctional beliefs regarding concerns about others’ approval and performance expectations on a 7-point scale ranging from *totally agree* to *totally disagree*. Two DAS factors are Approval by Others (e.g., “My value as a person depends greatly on what others think of me”), comprised of 10-items, and Performance Evaluation/Perfectionism (e.g., “If I fail partly, it is as bad as being a complete failure”), comprised of 15 items. Both factors have shown good construct validity (Francis-Raniere et al., 2006). Mean and Cronbach’s alpha in the present study were 2.98 (SD = .52) and .84 for the Total Scale, 2.40 (SD = .62) and .87 for the Performance Evaluation/Perfectionism subscale, and 3.93 (SD = .86) and .78 for the Approval by Others subscale.
Depressive Experiences Questionnaire (DEQ: Blatt et al., 1976). The DEQ is a 66-item scale rated on a 7-point scale from (from strongly disagree to strongly agree), and has three factors measuring the depressive personality styles proposed by Blatt et al. (1976): Dependency, Self-Criticism, and Efficacy. We used only the Dependency and Self-criticism subscales in this study. The Self-Criticism subscale involves items such as “I have a difficult time accepting weaknesses in myself” and the Dependency subscale involves items such as “Without support from others who are close to me, I would be helpless”. The DEQ has shown high internal and retest reliability (Blatt et al., 1976) and good construct validity (Zuroff et al., 2004). Mean and Cronbach’s alpha in the present study were 3.89 (SD = .79) and .68 for Dependency and 3.99 (SD = .91) and .86 for Self-Criticism.

Response Style Questionnaire (RSQ; Nolen-Hoeksema & Morrow, 1991). The RSQ consists of a 21-item rumination (RSQ-R) and 11-item Distraction (RSQ-D) scale, each designed to assess characteristic styles of responding to or regulating dysphoria. RSQ-R assesses the predisposition to focus on or ruminate on depressed mood (maladaptive regulation), whereas RSQ-D assesses the predisposition to engage in non-dangerous, distracting thoughts and actions as a means of attenuating dysphoria (adaptive regulation). Mean and Cronbach’s alpha for RSQ-R in the current study were 2.0 (SD = .37) and .92. Mean and Cronbach’s alpha for RSQ-D in the present study were 2.5 (SD = .50) and .80, respectively.

Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) Scale (Carver & White, 1994). The BIS/BAS scale consists of a 7-item BIS scale and a 13-item BAS scale. BIS was designed to assess sensitivity to potential punishment, whereas BAS-Total was designed to assess sensitivity to potential rewards. As in prior research (Coan & Allen, 2003), analyses
focused on the BAS-Total scale. Mean and Cronbach’s alpha for the BAS-Total scale in the present study were 3.0 (SD = .39) and .83.

References for Exploratory Measures

Supplemental Table 1: Partial correlations among Study Variables controlling for Beck Depression Inventory (BDI) Scores

<table>
<thead>
<tr>
<th></th>
<th>FEA</th>
<th>CSQ-N</th>
<th>CSQ-P</th>
<th>DEP</th>
<th>DEQ-DEP</th>
<th>DEQ-SC</th>
<th>RSQ-R</th>
<th>RSQ-D</th>
<th>DAS-T</th>
<th>DAS-PE</th>
<th>DAS-AO</th>
<th>SAS-SOC</th>
<th>SAS-AUT</th>
<th>BAS</th>
<th>BIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA</td>
<td></td>
</tr>
<tr>
<td>CSQ-N</td>
<td>-.42**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CSQ-P</td>
<td>.01</td>
<td>.03</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DEP</td>
<td>-.40*</td>
<td>.35*</td>
<td>-.04</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DEQ-DEP</td>
<td>.06</td>
<td>.19</td>
<td>.19</td>
<td>.30</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DEP-SC</td>
<td>.08</td>
<td>.29</td>
<td>-.02</td>
<td>.02</td>
<td>-.39</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSQ-R</td>
<td>-.38*</td>
<td>.30</td>
<td>-.09</td>
<td>.29</td>
<td>.26</td>
<td>.20</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSQ-D</td>
<td>-.10</td>
<td>.03</td>
<td>.23</td>
<td>-.16</td>
<td>-.06</td>
<td>-.29</td>
<td>-.21</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS-T</td>
<td>-.15</td>
<td>.36*</td>
<td>.15</td>
<td>.31</td>
<td>.35*</td>
<td>.45**</td>
<td>.24</td>
<td>-.33*</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS-PE</td>
<td>-.19</td>
<td>.34*</td>
<td>.13</td>
<td>.07</td>
<td>-.17</td>
<td>.53**</td>
<td>.01</td>
<td>-.17</td>
<td>.79**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS-AO</td>
<td>-.09</td>
<td>.29</td>
<td>.12</td>
<td>.36*</td>
<td>.42*</td>
<td>.21</td>
<td>.28</td>
<td>-.39*</td>
<td>.75**</td>
<td>.29</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS-SOC</td>
<td>-.18</td>
<td>.28</td>
<td>-.05</td>
<td>.20</td>
<td>.42**</td>
<td>.25</td>
<td>.31</td>
<td>-.20</td>
<td>.69**</td>
<td>.40*</td>
<td>.56**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS-AUT</td>
<td>-.19</td>
<td>-.07</td>
<td>.12</td>
<td>-.15</td>
<td>-.52**</td>
<td>.21</td>
<td>.02</td>
<td>.36*</td>
<td>-.19</td>
<td>.04</td>
<td>-.38*</td>
<td>-.21</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS</td>
<td>.11</td>
<td>.09</td>
<td>.32*</td>
<td>.09</td>
<td>.02</td>
<td>-.09</td>
<td>-.10</td>
<td>.26</td>
<td>-.24</td>
<td>-.14</td>
<td>-.28</td>
<td>-.27</td>
<td>.25</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BIS</td>
<td>-.22</td>
<td>.28</td>
<td>.15</td>
<td>.15</td>
<td>.43**</td>
<td>-.12</td>
<td>.19</td>
<td>-.01</td>
<td>.23</td>
<td>.06</td>
<td>.24</td>
<td>.35</td>
<td>-.18</td>
<td>.14</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. FEA = composite frontal EEG asymmetry \([\ln(\text{mean of F4/F8}) - \ln(\text{mean of F3/F7})]\); CSQ-N = Cognitive Style Questionnaire–Negative Composite; CSQ-P = Cognitive Style Questionnaire–Positive Composite; DEP = Prospective Depressive Episode (1 = Yes; 0 = No); DEQ-DEP = Dependency subscale from the Depressive Experiences Questionnaire; DEQ-SC = Self-Criticism subscale from the Depressive Experiences Questionnaire; RSQ-R = Rumination subscale from the Response Style Questionnaire; RSQ-D = Distraction subscale from the Response Style Questionnaire; DAS-T = Total scale from the Dysfunctional Attitudes Scale; DAS-PE = Performance Evaluation subscale from Dysfunctional Attitudes Scale; DAS-AO = Approval by Others subscale from the Dysfunctional Attitudes Scale; SAS-SOC = Sociotropy subscale from the Sociotropy-Autonomy Scale; SAS-AUT = Autonomy subscale from the Sociotropy-Autonomy Scale; BAS = Total scale from Behavioral Approach System Sensitivity Scale; *=p<.05; **=p<.01.