
In humans and other primates, the cingulate — a thick 
belt of cortex encircling the corpus callosum — is one of  
the most prominent features on the mesial surface of the 
brain (FIG. 1a). Early research suggested that the rostral 
cingulate cortex (Brodmann’s ‘precingulate’1; architec-
tonic areas 24, 25, 32 and 33) plays a key part in affect 
and motivation2 (FIG. 1b). More recent research has 
enlarged the breadth of functions ascribed to this region; 
in addition to emotion3, the rostral cingulate cortex has 
a central role in contemporary models of pain4,5 and 
cognitive control6,7. Work in these three basic domains 
has, in turn, strongly influenced prominent models of 
social behaviour8, psychopathology9–11 and neurological 
disorders12.

Despite this progress, key questions about the func-
tional organization and significance of activity in the 
rostral cingulate cortex remain unresolved. Perhaps 
the most basic question is whether emotion, pain and 
cognitive control are segregated into distinct subdivi-
sions of the rostral cingulate or are instead integrated 
in a common region. In a pair of landmark reviews, 
Devinsky et al.13 and Bush et al.14 marshalled a broad 
range of functional imaging, electrophysiological and 
anatomical data in support of functional segregation, 
arguing that the anterior cingulate cortex (ACC; also 
known as the ‘rostral’ ACC) is specialized for affective 
processes, whereas the midcingulate cortex (MCC; also 
known as the ‘dorsal’ ACC) is specialized for cognitive 

processes (FIG. 1c,d). Subsequent meta-analyses of func-
tional imaging studies have provided some support for 
this claim15.

Although the segregationist model remains highly 
influential, new data suggests that it is no longer ten-
able. For example, recent imaging data implicate MCC in 
the regulation of autonomic activity16,17 and the percep-
tion and production of emotion3,18. Similarly, neuronal 
recordings demonstrate that MCC is responsive to emo-
tionally charged words in humans19. Especially robust 
links have been forged between activity in the anterior 
subdivision of the MCC (aMCC; FIG. 1c) and the experi-
ence of more intense states of negative affect, as with the 
anticipation20–22 and delivery23,24 of pain and other kinds 
of aversive stimuli25,26. A particularly dramatic example 
comes from a recent study showing that activation of 
aMCC parametrically tracks the physical imminence of a 
spider placed near the foot27. Importantly, meta-analyses 
that have examined imaging studies of negative affect21, 
pain23 or cognitive control28 in isolation suggest that each 
of these domains consistently activate aMCC. Based on 
such observations, there is a growing recognition that 
aMCC might implement a domain-general process 
that is integral to negative affect, pain and cognitive 
control5,29–34.

In this Review, we examine this integrative hypoth-
esis about the functional organization of the rostral cin-
gulate cortex with a special focus on the contribution of 
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Abstract | It has been argued that emotion, pain and cognitive control are functionally segregated 
in distinct subdivisions of the cingulate cortex. However, recent observations encourage a 
fundamentally different view. Imaging studies demonstrate that negative affect, pain and cognitive 
control activate an overlapping region of the dorsal cingulate — the anterior midcingulate 
cortex (aMCC). Anatomical studies reveal that the aMCC constitutes a hub where information 
about reinforcers can be linked to motor centres responsible for expressing affect and executing 
goal-directed behaviour. Computational modelling and other kinds of evidence suggest that this 
intimacy reflects control processes that are common to all three domains. These observations 
compel a reconsideration of the dorsal cingulate’s contribution to negative affect and pain.
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Cognitive control
A range of elementary 
processes (such as attention, 
inhibition and learning) that are 
engaged when automatic or 
habitual responses are 
insufficient to sustain 
goal-directed behaviour. 
Control can be engaged 
proactively or reactively. 

aMCC to negative affect and pain. We neither attempt 
a comprehensive overview (see ReF. 12) nor do we pro-
vide a detailed discussion of this region’s role in appe-
titively motivated learning and behaviour, phenomena 
that have been the subject of other recent reviews35–37. 
We first address the question of whether MCC should 
be conceptualized as a territory specialized for ‘cogni-
tive’ processes, as segregationist models claim. We show 
how three largely independent lines of evidence — 
physiological, anatomical and functional — challenge 

longstanding claims of functional segregation in the 
rostral cingulate cortex. We then explore the possibil-
ity of using ideas adopted from computational models  
of cognitive control and reinforcement learning to address 
the contribution of aMCC to negative affect and pain. 
Although these models are familiar to many cognitive 
neuroscientists, we believe that they provide a useful, 
if underappreciated, framework for generating mecha-
nistic hypotheses about the role of aMCC in aversively 
motivated behaviour. This perspective, which we term 
the ‘adaptive control hypothesis’, can account for a 
number of observations not readily accommodated by 
segregationist models. however, it also raises a number 
of interesting new questions. We conclude by outlining 
several strategies for answering them.

Anatomical and physiological convergence
Functional imaging evidence of overlap in the aMCC. 
As the size and scope of the imaging literature have bur-
geoned, it has become increasingly difficult to synthesize 
new data into existing models of functional organization. 
This problem is particularly acute when attempting to 
integrate observations from disparate domains, such as 
affect, pain and cognition. This challenge can be over-
come using new techniques for performing voxel-by-
voxel, or ‘coordinate-based’, meta-analysis (CBMA)38. 
here we used CBMA to evaluate whether imaging stud-
ies of negative affect, pain and cognitive control provide 
evidence for colocalization or segregation in the rostral 
cingulate cortex. Given the observations described earlier, 
we anticipated that all three domains would consistently 
activate an overlapping region within aMCC. To do so in 
an unbiased and replicable way, we identified 939 studies 
in the BrainMap database reporting activation in ACC or 
MCC. We then identified activation foci (peaks) associ-
ated with manipulations of negative affect, pain or cogni-
tive control in healthy unmedicated adults (for additional 
details, see Supplementary information S1 (box)).

The negative affect database included foci associated 
with manipulations designed to induce negative emo-
tions, including fear, anger and disgust. To minimize 
potential overlap with studies of cognition, manipula-
tions that were unlikely to produce clear-cut affect — 
such as the perception of facial expressions or the reading 
of ‘taboo’ words — were excluded. The pain database 
included foci associated with the delivery of physically 
painful stimuli, such as heat, cold or electric shock. The 
cognitive control database included foci associated with 
a number of tasks designed to isolate the need to over-
come the reflexive allocation of attention or execution 
of actions (for example, the Stroop task, Go/No-Go task 
and eriksen Flanker task). Collectively, the three databases 
included 380 activation foci from 192 studies involving 
nearly 3,000 participants (FIG. 2).

We used the activation likelihood estimate (AlE) 
algorithm38 to identify voxels within ACC or MCC 
that were consistently activated by negative affect, pain 
or cognitive control (see Supplementary information 
S1 (box)). using these three maps, we created a single 
‘conjunction map’39 showing voxels that were consist-
ently activated across the three domains. If negative 

Figure 1 | Divisions of the human rostral cingulate cortex. The rostral cingulate has 
been partitioned on physiological and anatomical grounds at spatial scales ranging from 
the macroscopic to the molecular. a | Three-dimensional rendering of the left rostral 
cingulate cortex. The cingulate (shown in red) was manually traced on a single subject’s 
magnetic resonance image (MRI). Much of the constituent cortical grey matter lies 
buried within the cingulate sulci, a fact not apparent from inspection of the mesial 
surface (BOX 1; see Supplementary information S1 (box)). b | Architectonic areas of the 
cingulate. Areas were defined211 on the basis of differences in microanatomy and 
neurotransmitter chemistry, and hence, differ somewhat from the classical descriptions 
of Brodmann and other pioneering neuroanatomists1,212. Architectonic features provide 
one means of defining homologies across species183,213. c | The four major subdivisions of 
the rostral cingulate. Subdivisions were defined by Vogt and colleagues213 on the basis  
of regional differences in microanatomy, connectivity and physiology. The supracallosal 
portion of the cingulate is designated the midcingulate cortex (MCC) and is divided into 
anterior (aMCC; shown in green) and posterior (pMCC; shown in magenta) subdivisions. 
The portion of the cingulate lying anterior and ventral to the corpus callosum is 
designated the anterior cingulate cortex (ACC) and is divided into pregenual (pgACC; 
shown in orange) and subgenual (sgACC; shown in cyan) subdivisions by the coronal 
plane at the anterior tip of the genu (see also Supplementary information S1 (box)).  
d | The functional segregation model of Bush, Luu and Posner14. On physiological and 
anatomical grounds, Bush et al.14 proposed that the rostral cingulate consists of two 
functionally segregated regions: a rostroventral ‘affective’ division (ACC; originally 
termed ventral ACC) and a dorsal ‘cognitive’ division (MCC; originally termed  
dorsal ACC). PCgS, paracingulate sulcus. CaS, callosal sulcus; CgS, cingulate sulcus.  
Part b is reproduced, with permission, from ReF. 211 © (2009) John Wiley & Sons. Part c is 
reproduced, with permission, from ReF. 198 © (1989) Oxford University Press; Part d is 
modified, with permission, from ReF. 14 © (2000) Cell Press. 
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affect, pain and cognitive control are strictly segregated, 
we would expect to see little or no overlap. Instead, the 
conjunction map revealed a sizable cluster in the dorsal 
portion of the aMCC (FIG. 2).

Another way to evaluate functional segregation is to 
test whether each domain differentially activates the ‘cog-
nitive’ division (MCC) compared to the ‘affective’ division 
(ACC) of the cingulate cortex (FIG. 1d). In the case of strict 
segregation, we would expect studies of cognitive control 
to activate MCC more frequently than ACC, and indeed, 
this is what was found (odds = 4.8, confidence interval 
(CI) = 3.2–7.1, P < 0.001). Conversely, we would expect 
studies of negative affect to activate MCC less frequently 
than ACC, but in fact they were equally likely to activate 
the two divisions (odds = 1.1, CI = 0.8–1.6, P = 0.64). It is 
less clear what to expect for studies of pain, but given the 
strong association between pain and negative affect40, we 
might expect pain to preferentially activate the ‘affective’ 
division (ACC). Instead, studies of pain were more likely 
to activate the ‘cognitive’ division (MCC) (odds = 4.9, 
CI = 2.9–8.3, P < 0.001).

Collectively, these observations refute claims that cog-
nition and emotion are strictly segregated into different 
divisions of the rostral cingulate cortex — claims that 
were heavily based on an early meta-analysis of imag-
ing studies14 (for a discussion of why our results differed 
from earlier analyses, see Supplementary information S1  
(box)). Instead, these observations show that aMCC is 
consistently activated by the elicitation of negative affect, 
pain and cognitive control. of course, these results do 
not preclude the possibility that this region contrib-
utes to other psychological processes, such as reward-
motivated behaviour. Furthermore, they do not address 
whether segregation is present at finer levels of analysis 
— for example, in individual participants or neurons. 
Similarly, segregation may be present on a finer timescale 
than that resolved by conventional imaging techniques30. 
nevertheless, what these results do demonstrate is that 
conventional functional imaging studies of negative 
affect, pain and cognitive control all consistently report 
activation in this subdivision of rostral cingulate cortex.

Anatomical evidence of integration. It has often been 
suggested that the MCC possesses few connections 
with regions of the brain implicated in affect, motiva-
tion and nociception14. however, several recent tracing  
studies, along with a few older ones, indicate that this 
is not the case. In the remainder of this section, we 
focus largely on invasive tracing studies performed  
in monkeys — although rapid progress has been made in  
refining techniques for mapping structural connectiv-
ity in the living human brain, invasive studies are still 
considered the gold standard41. These data suggest that 
aMCC represents a hub, where information about pain, 
and other, more abstract kinds of punishment and nega-
tive feedback could be linked to motor centres responsi-
ble for expressing emotion on the face and coordinating 
aversively motivated instrumental behaviours.

The aMCC harbours the rostral cingulate zone (RCZ), 
a somatotopically organized premotor area42. originally 
identified on the basis of physiological and anatomical 
criteria in the monkey (in which it is termed the rostral 
cingulate motor area), the RCZ has been provisionally 
identified in humans with Brodmann areas 32’ and a24c’ 
in the vicinity of the cingulate sulcus43,44 (BOX 1; FIGS 1b,3a). 

Box 1 | Individual differences in rostral cingulate anatomy

Individual differences in the macroscopic anatomy of the cingulate represent a key 
obstacle to resolving the finer details of this region’s functional organization. In particular, 
there is considerable variability in the paracingulate sulcus (PCgS), a tertiary sulcus that is 
present in about one-half of the population and more prominent in the left hemisphere 
(see the figure, part a)190,191.

The presence of this sulcus exerts a strong impact on the layout and relative volume of 
the architectonic areas comprising MCC (see the figure, part b). In particular, area 32’, 
which is otherwise found in the depths of the cingulate sulcus (CgS), expands to occupy 
the crown of the external cingulate gyrus (ECgG; the ‘superior’ or ‘paracingulate’ gyrus)192. 
A parallel reduction occurs in the size of the more ventral supracallosal areas occupying 
the cingulate gyrus (CgG; areas 24a’ and 24b’)191,192. A key consequence is that the size and 
spatially normalized location of the cingulate premotor areas harboured within MCC 
(areas 32’ and 24c’; FIG. 3) can vary substantially across individuals.

More generally, variation in sulcal anatomy will tend to obscure fine-grained distinctions 
between deep and superficial strata within each of the major subdivisions; that is, 
unmodelled variation in the cingulate sulci will tend to inflate the spread of activation 
clusters and hamper efforts to dissociate superior from inferior areas within MCC (ReFS 
193,194) and rostral from caudal areas within ACC (compare with FIGS 1,3). Accounting for 
such individual differences may permit a clearer separation of intermingled affective, 
nociceptive and cognitive processes within aMCC (as in several important early imaging 
studies of pain195,196). CaS, callosal sulcus. Part a is reproduced, with permission, from ReF. 
197 © (1996) Oxford University Press. Numbers along the vertical and horizontal axes 
indicate the distance (mm) from the vertical and horizontal planes, respectively, defined by 
the anterior commissure. Part b, top left panel is modified, with permission, from ReF. 198 © 
(1989) Oxford University Press; Part b, bottom panels are modified, with permission, from 
ReF. 192 © (1995) John Wiley & Sons.
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The RCZ projects to the spinal cord, dorsal (sensorimo-
tor) striatum and primary motor, premotor and supple-
mentary motor cortices. Physiological studies in humans 
and monkeys indicate that RCZ is sensitive to the more 
abstract aspects of action planning and inhibition42,45. This 

stands in contrast to the caudal cingulate zone (CCZ), 
lying at the junction of aMCC and pMCC (FIG. 3a,b), which 
has been linked to more specific motor parameters, such 
as the precise direction of movement42,45.

other data suggest that RCZ can contribute to the 
expression of affect on the face (FIG. 3c). In monkeys, RCZ 
sends heavy bilateral projections to neurons in the facial 
nucleus that, in turn, innervate the muscles of the upper 
face (for example, the corrugator, frontalis and orbicu-
laris oculi muscles)46, the same muscles that underlie 
the expression of emotion and pain in monkeys47 and 
humans48,49 (FIG. 3d). Indeed, direct microstimulation of 
RCZ in monkeys can evoke facial displays classically asso-
ciated with the fight-or-flight reaction47. however, the 
precise role of RCZ in the wilful or spontaneous expres-
sion of emotion, or the regulation of such expressions  
remains unknown.

For the remainder of this Review, we refer to the clus-
ter of activation overlap obtained in our meta-analysis as 
aMCC (FIG. 2). nevertheless, the relatively dorsal position 
of the cluster within aMCC (approximately correspond-
ing to architectonic areas 32’ and a24b’/c’; FIGS 1b,2) is 
consistent with the provisional location of RCZ44. This 
suggests that it is specifically RCZ that is commonly 
activated by imaging studies of negative affect, pain and 
cognitive control.

The aMCC is also characterized by substantial con-
nections with subcortical regions involved in negative 
affect and pain (FIG. 4). It is a primary cortical target of 
the spinothalamic system, the chief source of peripheral 
nociceptive information50. There is some evidence that 
it sends connections to the lateral column of the periaq-
ueductal gray (lPAG), a region that is closely linked to 
vigilance, fight-or-flight and other defensive responses in 
rats and cats51. Robust reciprocal connections have also 
been found between aMCC and the lateral basal nucleus 
of the amygdala52,53. Functional connectivity data from 
humans show a similar pattern54,55. The basal nucleus 
is a convergence zone for information from the lateral 
nucleus of the amygdala (crucial for the initial evalu-
ation of motivationally significant stimuli) and orbito-
frontal cortex (oFC; a key source of inhibitory inputs to 
the amygdala)56. In rodents, the basal nucleus has also 
been implicated in the learning of aversively motivated  
instrumental behaviours57.

The aMCC projects to the ventral striatum, including 
the core region of the nucleus accumbens58. Although the  
ventral striatum is commonly associated with reward 
and appetitively motivated behaviour, it is also activated 
by the anticipation and avoidance of pain59,60 and other 
aversive stimuli in humans59,61,62. Dopaminergic inputs to 
aMCC in the monkey are predominantly from the sub-
stantia nigra and retrorubrial area, with a weaker contri-
bution from the ventral tegmental area63. Interestingly, 
some neurons in the primate substantia nigra are acti-
vated by aversive stimuli and cues predicting their occur-
rence64, suggesting that information about reinforcers,  
including punishment, could be passed to aMCC via 
ascending dopaminergic pathways.

In the cortex, aMCC is reciprocally connected with 
frontoparietal regions implicated in cognitive control 

Figure 2 | Negative affect, pain and cognitive control activate a common region 
within the aMcc. The map depicts the results of a coordinate-based meta-analysis 
(CBMA) of 380 activation foci derived from 192 experiments and involving more than 
3,000 participants. The uppermost panel shows the spatially normalized foci for each 
domain. The next panel shows thresholded activation likelihood estimate (ALE)38,214 maps 
for each domain considered in isolation. The two lowest panels depict the region of 
overlap across the three domains. The red cluster indicates the location of a three-way 
minimum significance conjunction39 of the three domains. The cluster lies in the anterior 
midcingulate cortex (aMCC) in the vicinity of areas 32’ and a24b’/c’ (Talairach 
coordinates: x = 0, y = 12, z = 42; volume is 11680 mm3). No other cluster reached 
significance. The numbers indicate distance (in mm) from the anterior commissure (for 
additional methodological details and results, see Supplementary information S1 (box)).
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Computational model
A mathematically detailed 
simulation of a psychological 
construct that can afford 
quantitative predictions of 
trial-by-trial fluctuations in 
behaviour and 
neurophysiology. 

Reinforcement learning 
models
(Often abbreviated to RL 
models.) A class of 
computational models 
describing how organisms learn 
to maximize reinforcement 
based on experience. RL 
models assume that organisms 
update reinforcer expectations 
on the basis of prediction errors 
and the current learning rate.

Stroop task
A task in which subjects rapidly 
respond to a colour word, such 
as ‘blue’, on the basis of the 
colour in which the letters are 
displayed. The task is easy 
when the colour and word are 
compatible (‘blue’ depicted in 
blue), but is more difficult when 
the two are incompatible 
(‘blue’ depicted in red).

Go/No-Go task
A task in which subjects must 
rapidly respond to one kind of 
cue (‘Go’) while withholding 
responses to another (‘No-Go’).

Eriksen Flanker task
A task in which subjects rapidly 
respond to a centrally 
presented visual cue, such as 
an arrowhead, that is 
neighboured (flanked) by cues 
that can potentially code an 
alternative response.

Instrumental behaviour
Behaviour that is goal-directed 
insofar as it increases the 
likelihood of obtaining rewards 
or avoiding punishments. 
Instrumental behaviour is 
distinguished from behaviours 
that are reflexively elicited 
independent of reinforcement, 
as in Pavlovian (classical) 
conditioning. 

Reinforcer
A stimulus that is capable 
(intrinsically or through 
learning) of eliciting 
instrumental behaviour; reward 
and punishment.

Attentional set
A template, rule or goal held in 
memory to guide attention (for 
example, search for angry 
faces in a crowded visual 
scene). 

and the maintenance of goals (such as attentional sets and 
rules), including dorsolateral prefrontal cortex (architec-
tonic area 9/46)65,66. however, it is also connected with all 
major divisions of the insula67,68, a region strongly impli-
cated in affect69, pain70,71 and cognitive control (including 
responses to errors and negative feedback)72–75.

Collectively, these data show that aMCC is well 
positioned to synthesize information about unlearned 
reinforcers (for example, pain, predators and threaten-
ing conspecifics) and learned reinforcers (for example, 
aversive cues and negative feedback) with current goals. 
Through efferents targeting the facial nucleus, aMCC 
could exploit this blend of information to drive or, more 

likely, to flexibly regulate76 the expressions needed to 
visually communicate with conspecifics and potential 
predators at close range. Such signals are a key element 
of many species’ defensive repertoire77, including that of 
our closest living relative, the chimpanzee78. The value 
of such expressions is not limited to communication; 
other evidence suggests that they serve to optimize per-
ception, amplifying or attenuating the intake of sensory 
information79. Finally, the abundant connections link-
ing aMCC to other motor centres would permit it to use 
information about reinforcers to plan or refine more 
complex, aversively motivated instrumental behav-
iours. This stands in sharp contrast with other cortical 

Figure 3 | cingulate premotor areas in the human Mcc. a | Provisional locations of the rostral and caudal cingulate 
zones (RCZ and CCZ)6,43. The RCZ lies in the anterior midcingulate cortex (aMCC), whereas the CCZ lies at the junction of 
aMCC and posterior MCC (pMCC) (FIG. 1). Zone borders are approximations (see also ReF.  44). b | Somatotopy in RCZ and 
CCZ based on human imaging studies43. c | Combined tracing and microstimulation work in macaque monkeys indicates 
that the monkey analogue of the human RCZ projects to the facial nucleus50,215, allowing it to control the muscles of the 
upper face (shown in white for the macaque). The facial muscles are largely conserved across primate species216,217. d | In 
humans, the muscles of the upper face (shown in red) have been associated with the elicitation of negative affect (for 
example, anger and fear), pain and — consistent with Darwin’s suggestions218 — perhaps ‘cognitive effort’ as well (see also 
Supplementary information S1 (box)). Pre-SMA, pre-supplementary motor area; RCZa, anterior portion of the RCZ; RCZp, 
posterior portion of the RCZ; Vca, anterior commissure. Numbers along the vertical and horizontal axes indicate the 
distance (mm) from the vertical and horizontal planes, respectively, defined by the anterior commissure. Image in part c 
courtesy of B. Waller, University of Portsmouth, UK, and L. Parr, Emory University, USA. Images in part d courtesy of J. Coan, 
University of Virginia, USA and C. Thrasher. Part a is modified, with permission, from ReF.  6 © (2004) AAAS. Part b is 
modified, with permission, from ReF.  43 © (1996) Oxford University Press.
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Architectonic area
A region of the brain defined 
by its cellular and molecular 
neuroanatomy, including 
neuronal structure 
(cytoarchitecture), myelin 
structure (myeloarchitecture) 
and neurochemistry 
(chemoarchitecture).

Electrodermal activity
(Often abbreviated to eDA.) 
Changes in the electrical 
resistance of the dermis 
stemming from activity of the 
sweat glands. eDA reflects 
activation in the sympathetic 
nervous system and is used to 
index arousal, stress and 
cognitive load. 

regions implicated in affect and motivation, such as 
the oFC and insula, which lack strong ties with motor 
centres35,80. 

Evidence of functional convergence. our meta-analysis 
revealed that negative affect, pain and cognitive control 
consistently activate an overlapping region of aMCC. 
This overlap suggests the possibility that aMCC performs 
a similar role across domains (for additional discussion 
of the logic underlying this inference, see Supplementary 
information S1 (box)). The anatomical data reviewed in 
the previous section are consistent with this hypothesis. 
We next consider whether the three domains also exhibit 
convergent functional properties. The logic here is that 
if aMCC implements a single, domain-general function, 
then measures of negative affect, pain and cognitive con-
trol should covary. These measures should also respond 
similarly to particular experimental manipulations and 
covary with distinct individual differences.

Several lines of evidence indicate that negative affect, 
pain and cognitive control exhibit a measure of func-
tional convergence. First, individual differences in meas-
ures of MCC structure predict variation in trait negative 
affect (neuroticism)81, conditioned fear82 and cognitive 

control83. Broadly speaking, individuals with a larger 
MCC report that they are predisposed to experience 
greater negative affect, exhibit enhanced electrodermal 
activity (EDA) and neural activation in aMCC during 
aversive conditioning tasks, and show reduced inter-
ference when performing the Stroop task84. Moreover, 
individual differences in negative affect predict varia-
tion in the other two domains. Specifically, individuals 
characterized by greater negative affect show increased 
engagement of control processes (indexed by well-val-
idated event-related potential (ERP) measures85 that are 
thought to be generated in MCC86) when performing 
prototypical cognitive control tasks (see Supplementary 
information S1 (box)). They also exhibit increased sen-
sitivity to experimental pain, particularly the affective 
qualities of pain (pain ‘unpleasantness’)87–90.

Second, manipulations of all three domains have been 
shown to amplify measures of autonomic arousal and 
negative affect. In particular, pain91,92 and cognitive con-
trol93,94 have been shown to increase EDA and amplify 
the fear-potentiated startle reflex (FIG. 3d). These findings 
are linked to MCC by the observation that individuals 
who exhibit larger startle reflexes in response to errors 
on a prototypical cognitive control task (the Eriksen 
flanker task) show ERP evidence of enhanced control-
related activity in MCC93. Similarly, individuals show-
ing increased EDA in response to pain exhibit greater  
activation in aMCC and amygdala91.

Third, manipulations of all three domains can 
produce distinct changes in the muscles of the upper 
face48,49,95–98 (FIG. 3d). As noted earlier, tracing studies in 
monkeys suggest that these muscles can be modulated, 
through the facial nucleus, by aMCC.

Fourth, manipulations targeting one domain can alter 
measures of the others. Experimentally induced negative 
affect, for example, can selectively disrupt the perform-
ance of tasks that strongly engage cognitive control48,99. 
Cognitive control tasks can attenuate the intensity of 
negative affect100 and pain101,102. Indeed, concurrent per-
formance of the Stroop task attenuates pain-evoked acti-
vation in MCC103. Analgesic placebos show evidence of 
‘cross-domain transfer’ — that is, they attenuate negative 
affect elicited by aversive images in addition to decreas-
ing pain104. Conversely, the administration of anxiolytic 
compounds (that are not directly analgesic) can reduce 
the experience of pain89 and reduce aMCC activation to 
cues predictive of imminent pain104. Evidence for cross-
domain interactions is consistent with the idea that 
negative affect, pain and cognitive control can compete  
for, or otherwise modulate, a common functional 
resource implemented in aMCC. Cross-domain disrup-
tion, in particular, indicates that this resource makes a 
necessary contribution across domains. It is important 
to emphasize, however, that such cross-domain influ-
ences are often complex and do not necessarily impair 
performance or attenuate the intensity of subjective 
experience48,102.

Fifth, all three domains are similarly affected by 
manipulations of ‘certainty’, variously described in terms 
of ambiguity (‘unknown uncertainty’ of an outcome), 
controllability, determinacy, predictability, risk (‘known 

Figure 4 | subcortical connnectivity of the macaque analogue to the human rcZ. 
The monkey analogue to the rostral cingulate zone (RCZ) receives substantial inputs 
from the spinothalamic system, which relays nociceptive information from the periphery 
to RCZ via the mediodorsal nucleus of the thalamus. Dopaminergic inputs to RCZ arise 
from the substantia nigra and, to a lesser extent, the ventral tegmental area. RCZ projects 
to the ventral striatum, including the core region of nucleus accumbens, and has robust 
reciprocal connections with the lateral basal nucleus of the amygdala (see 
Supplementary information S1 (box)). Afferents are shown in black, efferents are shown 
in light grey and reciprocal connections are shown by dotted arrows. 
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Event-related potential
(Often abbreviated to eRP.) A 
scalp-recorded measure of the 
average brain electrical activity 
evoked by a particular stimulus 
or response.

Fear-potentiated startle 
reflex
A reflex evoked by the sudden 
onset of high-intensity stimuli 
(for example, a loud noise) and 
amplified by negative affect. In 
humans, this is measured using 
electrodes overlying orbicularis 
oculi, the muscle responsible 
for eye blinks.

Response conflict
Competition elicited by stimuli 
associated with multiple, 
incompatible response 
tendencies — as in the Stroop 
task.

uncertainty’ of an outcome) or volatility. For example, 
reducing the predictability of a physical threat amplifies 
ratings of anxiety and peripheral measures of negative 
affect, such as fear-potentiated startle and EDA105,106, and 
activates aMCC106. likewise, uncertainty about the tim-
ing or magnitude of painful stimulation increases ratings 
of pain unpleasantness and can markedly alter the psy-
chophysical function relating different ‘doses’ of painful 
stimulation to subjective perception105,107–110. Reductions 
in perceived instrumental control have been shown to 
amplify pain-evoked activation in aMCC111 and increase 
preparatory MCC activity in aversively motivated instru-
mental conditioning paradigms112. Moreover, ERP indi-
ces of cognitive control that are thought to be generated 
in MCC are amplified by response uncertainty86 and 
unexpected outcomes113. Along similar lines, greater 
response uncertainty during probabilistic learning114 
and economic decision making tasks115,116 activate 
aMCC. Taken together, these observations suggest that 
the common function implemented in aMCC is sensi-
tive to certainty about ‘actions’ (which response to make)  
and ‘outcomes’ (the magnitude and likelihood of the 
reinforcers acquired or avoided by such actions).

Finally, the hypothesis that aMCC activation could 
reflect a common operation across domains is consist-
ent with striking similarities in the functions that have 
been ascribed to negative affect, pain and cognitive con-
trol by domain-specific theories. Cognitive control, for 
example, has been described as an early warning sys-
tem that allows animals to proactively alter attention or 

behaviour to avoid future errors117. A similar warning 
function has been ascribed to pain118 and to some kinds 
of negative affect, such as fear and anxiety119,120. like 
cognitive control, it has been suggested that negative 
affect (for example, fear and anger) is goal-directed and 
flexibly coordinates anticipatory responses that decrease 
the likelihood of future punishment121,122. Demands 
for cognitive control are also thought to motivate new 
learning34. Such demands may serve as a teaching sig-
nal that penalizes choices, strategies or actions requir-
ing greater control, promoting avoidance of cognitively 
taxing actions in the future. Indeed, it has been shown 
that variation in the error-related negativity (ERn; an 
ERP component that is sensitive to control demands and 
thought to be generated in MCC) predicts the degree 
to which individuals learn from the negative conse-
quences of their actions: individuals with larger ERns 
show enhanced avoidance learning for events associ-
ated with negative outcomes123,124. Imaging studies have 
revealed broadly similar effects in MCC125. This teaching 
function is reminiscent of the role ascribed to pain and 
negative affect in reinforcing withdrawal-related behav-
iours and driving the acquisition of instrumental avoid-
ance12,119121. Given these numerous parallels, Yeung and 
colleagues30 have speculated that the signals responsible 
for triggering cognitive control (for example, the output 
of a response conflict monitor; BOX 2) could represent the 
computational underpinning of negative affect. That is, 
the same computational machinery might be engaged 
when cognitive control or negative affect are elicited. 

The adaptive control hypothesis
The aMCC uses information about punishment to control 
aversively motivated actions. The observations reviewed 
in the previous section suggest that aMCC makes a simi-
lar functional contribution to negative affect, pain and 
cognitive control. But what is the nature of this ‘domain-
general’ contribution? A plausible working hypothesis 
is that negative affect and pain tend to engage the same 
processes described by theories of cognitive control in 
order to solve conceptually similar problems. In the 
remainder of this Review, we refer to this pro cess as adap-
tive control, rather than cognitive control, to underscore 
its broader contribution to negative affect and nocicep-
tion. In the remainder of this section, we explore the util-
ity of using computationally inspired models of control 
and reinforcement learning (BOX 2) to clarify the role of 
aMCC in negative affect and pain. Adapting such mod-
els to the study of negative affect and pain promises to 
enhance the mechanistic specificity of accounts describ-
ing this region’s putative role in avoidance and defensive 
behaviours5, emotional appraisals21, emotional experi-
ence11, fear25, attention to pain26, pain expectancy126,127, 
pain-related motor control5,128 and so on.

Control processes are engaged when automatic or 
habitual responses are insufficient to support goal-
directed behaviour129. This occurs when there is uncer-
tainty about the optimal course of action (as in situations 
involving probabilistic learning), when potential actions 
are associated with substantial risks (for example, of fail-
ure, punishment or error) or when there is competition 

 Box 2 | Mapping neurobiological models of control onto the aMCC

Control is thought to reflect two elementary processes — one responsible for 
monitoring performance and detecting the need for control (a monitor), the other 
responsible for implementing control to protect and optimize goal-directed behaviour 
(a controller) — that together form a closed feedback loop. Control processes are often 
conceptualized as top-down signals that bias competition among stimuli (for attention) 
or response options (for action).

Some of the most fundamental computational and neurophysiological details of the 
rostral cinguate cortex’s contribution to control remain contentious7,146,199–202. In 
particular, a number of proposals have been made about what is monitored, including 
errors, error likelihood, expected risk, response conflict and reinforcement 
volatility199,203. Likewise, the control process has been modelled as a variety of different 
biasing signals, including biases toward slower (that is, more cautious) action, increased 
focusing of attention (that is, increasing the amount of attention allocated to relevant 
sensory information and/or decreasing the amount allocated to irrelevant or 
distracting information) or changes in the rate of new learning199,204.

Although it is clear that the anterior midcingulate cortex (aMCC) plays a key part in 
control, it is not yet clear whether this region is best conceptualized as a monitor, 
responsible for triggering control processes implemented in other regions (for example, 
the lateral prefrontal cortex and the striatum) in response to a locally generated signal, 
such as response conflict30,205; as a controller, triggered by signals conveyed from other 
regions, such as the striatum206; or some more complex arrangement73,146,200,205. It may 
also be the case that different kinds of control are implemented in neighbouring 
subregions of aMCC and pregenual anterior cingulate cortex (pgACC) or, perhaps, are 
organized along a more continuous functional gradient18,44,160–162. Similar ambiguities 
apply to scalp-recorded event-related potential (ERP) measures of control that are 
linked to MCC207. Research to clarify them is likely to have substantial benefits for 
understanding the part played by aMCC in negative affect and pain. Work that weds 
computational modelling, meta-analysis and individual differences analyses with 
neurophysiological techniques is likely to prove especially fruitful201. 
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between plausible alternative actions or between action 
and inaction (for example, flee-or-freeze, go or no-go). 
These features are hallmarks of environments where 
physical threat is genuine, as in many studies of fear, 
anxiety and pain. Indeed, recent work in rodents demon-
strates that physical threat can elicit competition between 
neural circuits mediating active (Go: avoidance) and pas-
sive (no-Go: freezing) defensive behaviours57. not sur-
prisingly, optimal instrumental behaviour in threatening 
environments has long been thought to require cognitive 
control129,130, which provides the biasing signal necessary 
to resolve response uncertainty or competition and avoid 
potentially catastrophic actions (BOX 2).

on the basis of earlier suggestions5,26,29,30,33,34 and 
more recent computational models of cognitive con-
trol and reinforcement learning (BOXeS 2,3), we pro-
pose that the core function common to negative affect, 
pain and cognitive control is the need to determine 
an optimal course of action in the face of uncertainty, 
that is, to exert control. Based on the data reviewed 
in the previous section, we further suggest that aMCC 
implements adaptive control by integrating informa-
tion about punishment (for example, likelihood and 
magnitude) arriving from the amygdala, spinothalamic 
system, striatum, insula and other regions (FIG. 4) in 
order to bias responding in situations where the opti-
mal course of action is uncertain or entails competition 
between alternative courses. outgoing control signals 
would presumably be sent directly to subcortical and 
cortical motor centers. Alternatively, control signals 
generated in aMCC and directed at the amygdala or 
lPAG might serve to resolve conflict between passive 
and active defensive behaviours. Several other mecha-
nisms are plausible and these are described more fully 
in the final section.

The aMCC is responsive to control demands in threat-
ening environments. To date, few studies have addressed 
whether aMCC is specifically involved in complex action 

planning or is sensitive to control demands (for example, 
the number of response options or response inhibition) 
in response to perceived physical threat (although some-
what more is known about its role in reward-motivated 
learning, see BOX 3). nevertheless, the extant data are 
consistent with a role in modulating action in response 
to information about punishment.

First, neuronal recordings in humans and monkeys 
show that pain-responsive MCC neurons are activated by 
both anticipation of pain131,132 and instrumental escape 
from pain133. These data underscore the close connec-
tions between pain, negative affect elicited by imminent 
pain and defensive action in MCC.

Second, consistent with the work highlighted in the 
previous section, other research indicates that these 
neural signals are sensitive to uncertainty and conflict. 
For example, source modelling analyses suggest that this 
MCC activity is amplified by uncertainty about the action 
associated with pain avoidance (action–outcome uncer-
tainty)112. likewise, the n2 — an ERP signature of control 
thought to be generated in MCC — is amplified when 
pain delivery requires the inhibition of movement134 and 
attenuated when participants are allowed to move135,136.

Third, lesions of the cingulate sulcus in monkeys, 
which effectively destroy the monkey analogue to the 
human RCZ, alter how threat modulates ongoing behav-
iour137. Specifically, lesioned monkeys are less reluctant 
to take food placed above a moving toy snake than con-
trols, an effect reminiscent of that obtained following 
amygdala lesions138,139 and consistent with our sugges-
tion that aMCC exploits ascending punishment signals 
to modulate instrumental behaviour.

Fourth, recent imaging studies suggest that aMCC 
might play a more specific part in regulating defensive 
responses to threat, consistent with our emphasis on 
control. Across mammalian species, defensive behaviour 
qualitatively varies with the psychological and physical 
imminence of threat — distal threats elicit risk assess-
ment, vigilance and the suppression of ongoing appetitive 

 Box 3 | The role of the aMCC in reward-motivated behaviour and positive affect

The adaptive control hypothesis is broadly consistent with an important body of work detailing the role of anterior 
midcingulate cortex (aMCC) in reward-motivated behaviour in macaque monkeys. Based on this research, it has been 
argued that aMCC is critically involved in computing the anticipated reward value of alternative actions, particularly in 
situations where action–outcome contingencies vary35,36. In particular, there is evidence that neurons in the vicinity of the 
monkey analogue to the human RCZ are sensitive to errors, the omission of expected rewards and the reward history of 
alternative responses35.

Computational neurophysiology suggests that these neurons encode predictions about future instrumental rewards, 
prediction errors in response to discrepancies between expected and obtained rewards and indices of uncertainty that 
moderate the rate at which new contingencies are learned36.

A key challenge for future research is to determine whether overlap between negative affect, pain and cognitive 
control in the human aMCC extends to positive affect and reward-motivated behaviour37, as we might expect if this 
region is insensitive to reinforcer valence and instead computes the salience of both rewards and punishments31,73,152,153. 
Certainly, the muscles of the upper face do not contribute exclusively to the expression of negative affect208. Moreover, 
recordings in behaving monkeys suggest that neurons responsive to the anticipation of punishment, reward, or both, are 
intermingled in aMCC209. Finally, a recent meta-analysis indicates that both reward and punishment consistently activate 
aMCC in humans210.

Future work aimed at surmounting this challenge will require rewards and punishments that are adequately matched 
and sufficiently potent. A related issue requiring empirical clarification is whether the adaptive control hypothesis 
pertains equally well to all ‘negative’ emotions (for example, fear, anger and sadness) (FIG. 3; see Supplementary 
information S1 (box)).
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Prediction error
In reinforcement learning 
models, an explicit description 
of the discrepancy between 
reinforcer expectations and 
actual reinforcement.

Electromyography
(Often abbreviated to eMG.) 
Recordings of electrical activity 
generated by the skeletal 
musculature.

and consummatory activities (such as foraging). As 
threat grows more imminent, these behaviours give way 
to affiliation and alarm calls, flight or freezing (if escape 
is thwarted) and, ultimately, to active defensive displays 
or even defensive attack77,140–142. In monkeys, the change 
of behavioural repertoire in response to increased threat 
imminence is associated with activation of aMCC143. 
likewise, in humans, aMCC is activated when escaping 
from a ‘virtual predator’ whose imminence dynamically 
varied in a game-like avoidance task (failure to escape 
the predator was paired with shocks)144,145. These data are 
consistent with suggestions that aMCC plays a key part 
in regulating instrumental defensive behaviours34 or is 
involved in selecting ‘options’ — sequences of elementary  
actions aimed at accomplishing a goal146.

Fifth, additional evidence for the adaptive control 
hypothesis comes from imaging studies showing that 
aMCC activity during aversively motivated learning is 
predicted by formal computational models of control and 
reinforcement learning147–150. Schiller and colleagues147, 
for example, recently showed that activation in aMCC 
encodes punishment prediction errors during the reversal 
of learned fear. These observations are broadly consist-
ent with the hypothesis that aMCC uses such predic-
tions to adopt the most adaptive response to threat. An 
alternative possibility is that this effect is a special case of 
this region’s role in computing signals of reinforcer ‘sali-
ence’ during both appetitively and aversively motivated 
behaviour31,151–153 (BOX 3). 

A broader perspective on the rostral cingulate cortex. The 
data that we have reviewed encourage a broader perspec-
tive on the functional importance of cingulate activity. 
The aMCC did not evolve to optimize performance on 
laboratory measures of ‘cold’ cognition, such as the Stroop 
task. Indeed, anthropological research suggests that the 
human brain, like that of our earlier ancestors, evolved in 
the context of substantial pressure from physical threats, 
including predation and intraspecific aggression154, that 
demanded a neural system capable of flexibly control-
ling aversively-motivated behaviour. The data we have 
surveyed are consistent with this speculation and suggest 
that the contribution of aMCC to laboratory measures 
of cognitive control might stem from its evolutionarily 
older role in regulating ‘hot’ behaviours25,47,155— such as 
expressive behaviour on the face and aversively motivated 
instrumental learning — that are elicited by stimuli and 
situations with affective and nociceptive importance (for 
a related perspective, see ReFS  34,156).

This view helps to explain why demands on cognitive 
control are associated with vestigial defensive reactions, 
such as brow furrowing and startle, and why individual 
differences in such measures predict the magnitude 
of control signals thought to be generated in aMCC 
(for example, the n2 component of the event-related 
potential). It also provides an explanation for why the 
anticipation and receipt of uncertain punishments, 
which place greater demands on control resources, 
produce greater activation of aMCC. Regardless of the 
evolutionary origins, observations such as these are 
not readily accommodated by accounts that emphasize 

a strict segregation of cognition from emotion and  
nociception in the cingulate.

Limitations of the available evidence
on the basis of a wide range of data and theories, we have 
suggested that activation of aMCC in studies of negative 
affect and pain reflects the engagement of control pro-
cesses that help to optimize responses made in the face 
of uncertainties about instrumental actions and the out-
comes they produce. We have also proposed that aMCC 
implements adaptive control by synthesizing information 
about punishment arriving from the amyg dala, spinotha-
lamic system, insula and other regions into a biasing signal 
that could modulate motor centres or subcortical regions, 
such as the amygdala and lPAG, that more proximally 
influence active (fleeing) and passive (freezing) defen-
sive behaviours. It is clear that these hypotheses reflect a 
number of indirect inferences, a limitation that reflects 
the state of the existing empirical record. Although much 
work remains, the adaptive control hypothesis provides a 
clear roadmap to the most profitable avenues for under-
standing the contribution of aMCC to negative affect and 
pain. here, we outline several strategies for more directly 
testing and refining this account.

First, our meta-analysis demonstrates that aMCC is 
consistently activated at the subdivision level by manip-
ulations of negative affect, pain and cognitive control. 
high-resolution, single-subject imaging analyses and 
intracerebral recordings will be required to determine 
whether negative affect and pain are anatomically 
coincident with cognitive control at finer levels of reso-
lution, are intermingled (as some early imaging stud-
ies suggest157–159) or are organized along overlapping 
gradients44,160–162. To permit a more decisive test, such 
studies should employ a broad battery of well-matched 
tasks (matched on certainty and motor requirements, 
for example). The use of single-subject conjunction 
analyses163 or single-subject spatial confidence inter-
vals164 would provide a rigorous means of quantifying 
the degree of overlap. Studies of this kind will also prove 
useful for determining whether negative affect and pain 
differentially activate superficial (RCZ) versus deep 
regions of aMCC (BOX 1; see also ReF. 137). Based on 
prior single-subject analyses of negative affect, pain or 
cognitive control126,158,163,165, we suspect that future work 
will reveal marked individual differences in the map-
ping of each domain to cingulate anatomy. Indeed, 
variation in the location of clusters across individuals 
within any one domain may well outweigh variation 
across domains.

Determining the source of such individual differences 
is a key challenge for future research. one promising way 
to tackle this problem is to acquire independent meas-
ures of affect, pain or cognitive control (for example, 
eye-tracking, facial action coding or electromyography,  
pupil dilation and the startle reflex). Variation in such 
measures — across conditions, across individuals, and 
within individuals — can clarify the psychological 
processes that are probabilistically recruited by each 
domain166. For example, individuals clearly differ in the 
intensity or likelihood of negative affect in response to 
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physical threats48 or performance errors93. Although 
typically not measured, such differences are likely to 
play a key part in determining which subregions of the 
cingulate cortex are recruited in each individual. From 
a translational perspective, such variation may also help 
to account for differences in treatment response or other 
clinical features of disorders that are associated with 
MCC abnormalities, such as post-traumatic stress and 
bipolar disorders10,11. Already, some investigators have 
begun to use measures of pain experience (self-report) 
and expression (peripheral motor reflexes and auto-
nomic activity) to map dimensions of the pain response 
onto the different subdivisions of the cingulate152,167. 
Another closely related strategy is to fit computational 
models to the data acquired from each participant and 
to use individual differences in the resulting parameter 
estimates to predict neural activity168.

Second, complex, multidimensional psychological 
processes — such as negative affect, pain and cogni-
tive control40,169 — are implemented in distributed neu-
ral networks. Although aMCC is involved in all three 
domains, it probably does so in combination with disso-
ciable networks. Functional connectivity170, mediation152 
or multivoxel pattern171 analyses (MVPA) would permit 
the identification and dissociation of such networks. 
MVPA may prove to be a particularly useful tool because 
it quantifies the degree to which distributed patterns of 
neural activity encode information about a domain. 
using MVPA one can ask, for example, whether the pat-
tern of neural activity corresponding to pain delivery is 
reactivated by performance errors or threat-of-shock in 
individual participants. MVPA would also potentially 
allow the discrimination of domain-specific processes 
that are intermingled at the subvoxel level172. ultimately, 
such multivariate analyses will be necessary to under-
stand how negative affect, pain and cognitive control 
emerge from the distributed activity of computation-
ally specialized regions. They should also prove helpful 
for determining whether the function implemented by 
aMCC varies qualitatively across different patterns of 
regional coupling170. 

Some of these regions may reside within the rostral cin-
gulate cortex. We rejected claims of strict functional seg-
regation because our CBMA demonstrated that imaging  
studies of negative affect, pain and cognitive control con-
sistently activate an overlapping region in aMCC (FIG. 2) 
and because ACC (the putative ‘affective division’ of the 
cingulate) was not preferentially associated with negative 
affect or pain. nevertheless, the results of the CBMA are 
consistent with a measure of functional specialization 
across rostral cingulate (FIG. 1c). For example, the CBMA 
indicated that only studies of negative affect consistently 
activated subgenual ACC (sgACC; see Supplementary 
information S1 (box)). likewise, the elicitation of nega-
tive affect and pain consistently activated pregenual 
ACC (pgACC) and posterior MCC (pMCC), whereas 
cognitive control did not.

Third, thoughtful experimental design, combined 
with computational modelling and network analyses or 
more invasive manipulations in non-human animals, 
will be required to clarify how aMCC uses information 

about punishment to adaptively control complex instru-
mental behaviours. A key question is whether this region 
represents a monitor, a controller or some combination 
of the two (BOX 2). It is possible that incoming informa-
tion about negative affect and pain reflects one of sev-
eral kinds of inputs that are monitored by aMCC and 
used to trigger control signals30. Such control signals 
may be generated in distal regions of the brain, such as 
the striatum or lateral prefrontal cortex (PFC), or may 
be generated locally in aMCC and conveyed directly to 
motor centres. Another possibility is that aMCC directly 
biases aversively motivated actions through its con-
nections with motor centres, but conveys the need for 
other kinds of control, such as the biasing of selective 
attention, to lateral PFC or parietal cortex173. Such dis-
sociation would help to reconcile the greater intimacy 
of aMCC with motor regions while acknowledging the 
well-documented role of lateral PFC in biasing activity 
in posterior sensory cortices174. 

A third possibility is that aMCC triggers or imple-
ments control in response to insular or amygdalar inputs. 
Consistent with this, more anxious individuals show 
aberrant coupling between aMCC and amygdala dur-
ing the presentation of images known to elicit negative 
affect175. Amygdalar signals might reflect competition 
between passive and active responses to noxious stim-
uli57, punishment predictions or prediction errors176, or 
a more general source of information about errors177–182. 
Such signals could be conveyed directly to aMCC or 
indirectly, through connections from the amygdala to 
the striatum, insula or pgACC. Why the amygdala gen-
erates such control signals and how this influences, or is 
influenced by, control processes implemented in aMCC 
are two crucial questions not addressed by any of the 
major computational models of control (BOX 2).

Finally, studies of non-human primates and human 
patients with lesions will be necessary to determine 
whether the contribution of aMCC to the adaptive con-
trol of punishment-motivated instrumental behaviour is a 
necessary one. non-human primate research will be par-
ticularly useful for bridging the gap between human imag-
ing studies and invasive studies of threat, fear and pain in 
rabbits and rodents25,155 — species that lack certain fea-
tures of the primate cingulate183. Combining invasive tech-
niques with imaging measures in primates should prove 
particularly useful in this regard. Functional imaging  
studies would be useful for more precisely identifying 
functionally homologous regions across species184. non-
human primate research will also be required to clarify 
the anatomical connectivity of aMCC, particularly of 
RCZ, and to develop a more detailed understanding  
of its role in planning complex actions42,185. This will be 
particularly crucial owing to the extreme rarity of circum-
scribed insults to aMCC in humans, a consequence of the 
wide ramifications of the arterial supply to this region13. 
Although the near absence of such data precludes strong 
inferences, extant neuropsychological studies are consist-
ent with the idea that MCC makes a necessary contri-
bution to adaptive control in humans186 (whether this is 
also true in monkeys remains contentious7). In particu-
lar, focal damage to left aMCC (including the probable 
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Neurofeedback
A kind of learning in which 
real-time neural activity is 
employed as feedback.

location of RCZ) is associated with exaggerated response 
conflict and attenuation of the ERn ERP component187,188 
(see ReF.  186 for conflicting findings). Studies employ-
ing neurofeedback techniques189 or microstimulation to 
directly manipulate activity in aMCC in humans would be 
a valuable adjunct to lesion studies. In particular, it would 
be useful to know whether these more direct manipu-
lations exert similar effects on measures of negative  
affect, pain and cognitive control.

Conclusions
In summary, a wide variety of evidence demonstrates 
that negative affect, pain and cognitive control are ana-
tomically and functionally integrated at the subdivision 
level in aMCC, likely within RCZ, the premotor area 
harboured in the dorsal portion of aMCC. on this basis, 
the claim that the cingulate cortex is strictly segregated 
into cognitive and affective divisions is no longer ten-
able. Computational models of cognitive control and 
reinforcement learning provide a foundation for inte-
grating such observations into a mechanistic account of 
this region’s contribution to negative affect and pain.

This framework leads to the adaptive control hypoth-
esis, which suggests that aMCC uses information about 
punishment to bias responding when the most adaptive 
course of action is uncertain. This account is not a new 
theory of rostral cingulate function. Indeed, many of the 
ideas that we have reviewed are well-known among cer-
tain groups of neuroscientists. It is instead a synthesis 
of earlier suggestions and new data into a clear working 
hypothesis about the contribution of aMCC to aversively 
motivated behaviour. As such, we have delineated the 
kinds of evidence that will be required to refine it.

Perhaps one of the most important challenges is 
determining whether adaptive control is specific to 
punishment or, instead, extends to rewards and appeti-
tively motivated behaviour. As we emphasized in BOX 3, 
a direct test of this possibility using adequately potent, 
well-matched reinforcers has yet to be performed. To 
conclude, attempts to refine the adaptive control hypoth-
esis or to adjudicate between it and narrower claims of 
segregation promise to enrich our understanding of this 
region’s contribution to negative affect and pain in health 
and disease.
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Supplementary information S1 
 
Method: Coordinate-Based Meta-Analysis (CBMA) of Functional Imaging Studies 
Study Selection 
General considerations. To accomplish the CBMA in an unbiased and replicable way, 
we used the Sleuth1 software package to identify all studies in the Brainmap database 
(http://brainmap.org) reporting activation in the rostral cingulate (i.e., ACC or MCC). 
Brainmap is by far the most comprehensive existing database of activation 
coordinates2 (>50,000 foci), and so afforded a reasonably representative sampling of 
the literature. Preliminary anatomical labels were automatically generated by 
Brainmap3 using coordinates transformed4, where necessary, to the Talairach-
Tournoux5 coordinate system. For the database search, rostral cingulate was defined 
as the left and right anterior cingulate gyri and portions of adjacent gyri that included 
architectonic areas 24, 25, 32, and 33. 

The initial search yielded 939 studies (59% of the database). Brainmap meta-
information and Pubmed were then used to eliminate studies that were unrelated to 
the three target behavioral domains of negative affect, pain, and cognitive control. 
Studies that involved pharmacological manipulations (e.g., opioids) or pathological 
individuals (e.g., schizophrenia, allodynia) were only included in cases where the 
investigators reported separate peaks for the drug-free condition or healthy control 
sample. Final screening entailed review of the published reports and Brainmap peaks 
for each contrast-of-interest in the database. De-activation peaks were excluded, given 
interpretive ambiguities. Generally, the most specific contrast-of-interest that showed 
ACC/MCC activation was included (e.g., anti-saccade vs. saccade), whereas closely 
related contrasts from the same sample (e.g., anti-saccade vs. fixation) were excluded. 
 
Negative affect. Students of emotion have emphasized that the neural circuitry 
implementing the perception and decoding of ‘emotional’ stimuli (e.g., distinguishing 
emotional facial expressions, reading ‘taboo’ words) is dissociable from that involved 
in the generation and experience of experimentally induced emotional states6-9. 
Unfortunately, most prior meta-analyses have failed to respect this distinction, 
potentially fostering considerable interpretive ambiguity (but see Refs.8,10). Indeed, a 
very recent CBMA revealed that emotionally-laden scenes (‘generation’), but not 
emotional faces (‘perception’) consistently activate aMCC10. Accordingly, here we 
identified contrasts targeting the induction of robust negative affect (i.e., anger, 
disgust, fear/anxiety, guilt, sadness). Studies of emotional perception were excluded. 
In contrast to some prior meta-analyses11-13, but in accord with prior investigations of 
negative affect in humans14,15 and nonhumans16-18, contrasts targeting learned fear and 
negative affect evoked by the delivery of non-painful punishments (e.g., odorants, 
tastants, monetary penalties) were included. Studies involving monetary penalties that 
entailed information about reversals, set-shifts, or related performance-related 
feedback were excluded as were studies of physical pain. 
 
Pain. For studies of pain, we included any contrast targeting activation evoked by the 
delivery of a physically painful stimulus regardless of modality (e.g., heat, cold, 
electric shocks) or site of delivery (e.g., hand, foot). 
 
Cognitive control. For studies of cognitive control, we adopted criteria broadly similar 
to those employed by prior narrative reviews19-22, CBMAs23-25, and individual 
comparison studies26. In accord with prominent cognitive neuroscience theories of 
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control and cingulate function27-29, these included contrasts targeting the need to bias 
competition to overcome the reflexive allocation of attention or execution of action in 
the service of a goal. Contrasts targeting the successful management of conflict (e.g., 
correctly executed incongruent vs. congruent Stroop/Flanker trials) or conflict-related 
signals (e.g., commission errors, set-shift feedback) were included. Studies involving 
monetary punishment were excluded. 
 
Data Reduction and Analytic Strategy 
To ensure that individual contrasts did not have an undue influence on hypothesis 
testing30, the coordinates of ‘redundant’ peaks from contrasts reporting multiple local 
maxima were averaged. Peaks were considered redundant in cases where the 
Euclidean displacement was less than or equal to the full width at half-maximum 
(FWHM) of the spatial filter used for ALE analyses (FWHM = 6mm). We elected to 
employ a somewhat smaller filter (FWHM = 6mm) than is typical for CBMAs 
(FWHM ≥ 8mm) to lessen the degree of overlap imposed on the unsmoothed peaks. 

The CBMA was conducted using the activation likelihood estimation (ALE) 
algorithm31-33 implemented in GingerALE (http://brainmap.org). Other techniques for 
performing CBMA are conceptually similar and have been shown to yield similar 
results34. In brief, this involved transforming individual foci into spatially smooth, 
three-dimensional activation probabilities. Separate ALE maps were generated for 
each of the 3 databases by summing the probabilities at each voxel. Mapwise 
significance was determined using a permutation test of randomly generated foci 
(5,000 permutations), corrected for multiple comparisons. Maps were thresholded 
using the False Discovery Rate (q =.05) with a cluster extent threshold proportional to 
the spatial FWHM (27 × 2-mm3 voxels = 6 mm3 = 216 mm3). Minimum conjunction 
maps35 were constructed using the thresholded ALE maps generated for each of the 
three domains (for a similar approach, see Ref.36). 

Frequency analyses employed the following macroscopic regions-of-interest 
(ROIs): MCC = peaks lying caudal to the genu of the corpus callosum (y=0) and 
dorsal to the genu and body of the corpus callosum; ACC = peaks lying anterior or 
ventral to the genu of the corpus callosum (for a similar approach, see Ref37). In the 
near future, it should be possible to employ probabilistic ROIs derived from 
architectonic analyses of the human brain ex vivo38. 
 
Results 
Descriptive Statistics 
Negative affect database. This database comprised 117 peaks across 72 statistical 
contrasts1 (M: 1.6 peaks/contrast (SD: 0.86)) derived from 59 publications39-97 (M: 1.2 
contrasts/sample (SD: 0.62)). As shown in Table 1, approximately one-third of the 
contrasts relied on the anticipation of punishment (e.g., threat of shock), one-third 
involved provocation or mixed induction procedures (e.g., Velten-type procedures), 

                                                
1 Brainmap.org study and contrast codes: 30253-3; 6040035-6; 7090253-1; 8080210-1; 8080212-1; 
30121-2; 30120-2; 8030083-1; 30377-1; 30377-3; 7120359-3; 7120359-7; 30380-1; 7090262-1; 
7090262-3; 8080180-1; 7090254-1; 8100244-3; 30383-2; 30385-1; 30385-3; 30384-2; 6030022-3; 
7110305-2; 8020044-3; 8020047-1; 7050139-3; 7110325-2; 7090246-5; 7120377-3; 7120374-2; 
7120387-1; 6080122-1; 6080122-9; 7090255-1; 7090255-2; 30390-5; 7080243-1; 4040032-1; 30261-
1; 30395-1; 6040031-3; 8100248-1; 8100248-5; 30397-1; 8030079-1; 8030079-4; 8030079-6; 
8030079-10; 8030079-12; 7110330-1; 8100250-2; 7060153-1; 7060153-2; 30405-2; 7090248-2; 
7090249-1; 30409-2; 7080226-2; 8040108-2; 7080206-1; 7080206-2; 30415-1; 8010034-3; 7100297-
2; 7100299-1; 30419-1; 30335-3; 5040059-1; 8100253-5; 7070195-1; 7090252-1.  
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one-quarter involved the presentation of aversive visual stimuli (i.e., images, film 
clips), and the remainder involved the delivery of non-painful punishment (e.g., 
odorants). Across paradigms, the contrasts were approximately evenly divided among 
those seeking to elicit (Table 2): (i) clear-cut withdrawal-related negative emotions 
(i.e., anxiety/fear or disgust), (ii) general negative affect, and (iii) approach-related 
(i.e., anger) or mixed-motivation negative emotions (i.e., sadness). All of the contrasts 
involving monetary punishment were included in a recent CBMA98, a small number 
of those involving aversive conditioning were included in a prior CBMA99, and 
approximately one-third of the negative affect database was incorporated in a 
comprehensive recent CBMA8. 
 
Table 1. Negative affect tasks 

Task Percent 
Aversive Odorants 1 

Received Monetary Penalty 1 
CO2 Challenge 3 

Anticipate Tastants 4 
Aversive Visual 4 

Threat of Shock 4 
Anticipate Monetary Penalty 7 

Aversive Instrumental 7 
Aversive Pavlovian Conditioning 11 

Visual (Images/Films) 24 
Mixed Induction/Provocation 34 

Total 100 

 
 Table 2. Targeted negative emotions 
Negative Emotion Percent M(SD) y M(SD) z 

Guilt 1 - - 
Anger 6 14.6(17.7) 29.8(11.0) 

Disgust 11 21.3(16.8) 18.3(22.7) 
Sadness 17 26.0(10.5) 9.1(15.2) 

Anxiety/Fear 28 19.9(17.7) 18.3(18.1) 
Negative 38 16.9(17.1) 26.5(16.1) 

Total 100 19.2(16.7) 21.2(18.0) 
 
Pain database. This database was comprised of 95 peaks across 56 statistical 
contrasts2 (M: 1.7 peaks/contrast (SD: 0.83)) derived from 43 publications90,100-141 (M: 

                                                
2 Brainmap.org study and contrast codes: 5040044-1; 5040012-1; 5040012-3; 5040045-1; 5040045-3; 
5040045-4; 5040046-1; 5040046-2; 5040014-3; 7110315-7; 5040015-2; 5040015-3; 5040062-1; 
5040062-2; 5040016-1; 5040016-2; 5040031-3; 5040017-1; 30122-1; 7060163-1; 5040063-1; 
5040048-1; 5040049-1; 5040050-1; 5040050-2; 30230-2; 7020031-2; 7090261-1; 7050136-2; 
7110322-1; 7110322-3; 5040032-4; 5040033-3; 5040051-1; 8020051-1; 8020051-4; 7080221-3; 
5040037-1; 5040037-2; 7070184-1; 7080223-3; 30414-2; 7080225-2; 6110183-2; 7100297-1; 
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1.3 contrasts/sample (SD: 0.51)). For the majority of contrasts (Tables 3-5), pain was 
manipulated using thermal manipulations (heat: 75%; cold: 7%) delivered to the hand, 
wrist or arm (91%). Across contrasts, pain was delivered about equally to the left 
(50%) or right (43%) sides. For three contrasts, ‘redundant’ peaks were spatially 
averaged. Approximately one-half of the pain studies were incorporated in a prior 
ALE meta-analysis of upper-limb thermal pain142.

                                                
5040039-1; 7060158-9; 5040040-1; 5040040-2; 5040041-1; 5040041-2; 5040056-2; 5040057-4; 
5040058-1; 7080238-1; 5040035-1. 
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 Table 3. Pain modality 
Modality Percent 
Electrical Shock 5 
Cold 7 
Mechanical Pressure/Pinprick 13 
Heat 75 
Total 100 
 
 Table 4. Laterality of pain delivery 
Side Percent 
Midline/Mixed 7 
Right 43 
Left 50 
Total 100 
 
 Table 5. Location of pain delivery 
Location Percent 
Face 2 
Chest 4 
Leg/Foot 4 
Arm/Hand 91 
Total 100 
Note: M(SD) Pain y-coordinate = 10.5(14.4); M(SD) z-coordinate = 30.9(14.4). 
 
Cognitive control database. This database was comprised of 168 peaks across 115 
statistical contrasts3 (M: 1.5 peaks/contrast (SD: 0.89)) derived from 90 
publications21,117,143-230 (M: 1.3 contrasts/sample (SD: 0.54)). For two contrasts, 
‘redundant’ peaks were spatially averaged. As shown in Tables 6-7, a variety of 
cognitive control tasks were associated with ACC/MCC peaks. Stroop (30%), go/no-
go (16%), antisaccade/antipointing (12%), stimulus-response reversals (7%), and 
flanker (7%) tasks were prominent. Most of the contrasts associated with ACC/MCC 
peaks could be classified as involving some form of response selection (53%), 
                                                
3 Brainmap.org study and contrast (‘experiment’) codes: 5090222-1; 7020068-2; 8010020-1; 5070122-
1; 30252-4; 30343-2; 5090225-4; 30308-2; 8080195-5; 8080195-7; 8080209-1; 30117-1; 30010-1; 
30309-1; 30228-1; 7040093-1; 5070131-2; 5070131-4; 30239-1; 30230-1; 7040095-1; 5080210-1; 
5120251-5; 5080211-1; 5090229-2; 30310-1; 7070172-1; 7070172-2; 7080198-2; 5120252-1; 
5120252-2; 5120252-5; 5120247-3; 30348-1; 30348-2; 5070136-1; 6060085-5; 30316-1; 5070139-2; 
5070141-1; 30351-2; 30279-3; 30279-4; 30279-5; 5070144-1; 7090264-2; 6070103-1; 6070103-2; 
5120249-1; 5120249-2; 5070148-2; 5040008-1; 5070147-2; 30327-1; 30327-3; 8080187-2; 7090265-
1; 30231-2; 7080219-2; 7080219-5; 8060147-1; 5070154-3; 30356-1; 5070093-2; 5080214-2; 30329-
2; 30463-1; 30386-1; 5070156-1; 5040011-1; 7080202-2; 30158-1; 30233-1; 7040112-2; 30246-1; 
30246-10; 30246-11; 30248-1; 30248-2; 30360-1; 5080219-3; 7040113-1; 6060090-2; 7100280-3; 
7080203-1; 30226-1; 30226-2; 7080204-2; 7090271-1; 7090271-5; 5090241-1; 5090241-2; 6080109-
1; 30178-2; 30210-1; 8010036-1; 5080221-2; 5080221-3; 5090243-2; 5090243-3; 5090243-4; 
7060159-4; 30333-1; 7080229-1; 7080229-2; 7080237-1; 7080237-3; 5070112-3; 7080210-1; 
6080112-1; 6080112-5; 7020067-1; 7020067-5; 7090272-1; 7080211-1. 
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response inhibition (13%), detection/correction of commission errors (12%), or 
feedback signaling the need to shift sets (11%). There was minimal overlap between 
the contrasts included in our cognitive control database and those incorporated in 
several recent CBMAs of Go/No-Go tasks231 and cognitive control23. Approximately 
one-quarter to one-half of the contrasts in the cognitive control database were 
included in prior CBMAs24,25. 
 
 Table 6. Cognitive control tasks 
Task Percent 
Multisource Interference 1 
Paired Associates 1 
Visual Category Learning 1 
Motion Prediction 2 
Picture Naming 2 
Drawing 3 
Stop 3 
Multiple Classification 4 
Simon 4 
Miscellaneous Conflict 5 
Card Sort 6 
Flanker 7 
Stimulus-Response Reversal 7 
Antisaccade/Antipointing 12 
Go/No-Go 16 
Stroop 30 
Total 100 
 
 Table 7. Cognitive processes 
Process Percent M(SD) y M(SD) z 
Attention Switching 1 - - 
Miscellaneous Conflict 1 - - 
Proactive Interference 1 - - 
Phonological/Semantic 
Interference 3 - - 

Task Switching 5 5.7(20.8) 33.5(9.4) 
Negative Feedback/Set Shifting 11 21.9(8.0) 31.9(12.8) 
Error Detection/Correction 12 19.3(8.4) 31.5(11.3) 
Response Inhibition 13 17.3(15.8) 29.1(13.6) 
Response Selection 53 16.2(11.8) 33.7(10.9) 

Total 100 16.8(12.5) 32.6(11.8) 
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Figures and Additional Tables 
 
 Figure 1. ALE maps for each of the three behavioral domains.. 
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Table 8. Cluster maxima for the negative affect ALE map. 
Volume (mm3) Mean Max x y z ROI 

3264 0.0473 0.0892 -2  10  38 aMCC 
1376 0.0402 0.0574 -4  32  22 pgACC 
912 0.0384 0.0559  2  30  -2 sgACC 
528 0.0382 0.0612 -4  -4  40 pMCC 
272 0.0347 0.0431  6  16 -10 sgACC 

Note: Coordinates represent the cluster center-of-mass in the coordinate system of 
Talairach and Tournoux. 
 
 
 Table 9. Cluster maxima for the pain ALE map. 
Volume 
(mm3) Mean Max x y z ROI 

9416 0.0435 0.13 -2  0 44 aMCC/pMCC 
552 0.029 0.0478 -6  42 10 pgACC 

Note: Coordinates represent the cluster center-of-mass in the coordinate system of 
Talairach and Tournoux. 
 
 
 Table 10. Cluster maxima for the cognitive control ALE map. 
Volume (mm3) Mean Max x y z ROI 

11680 0.069 0.243 0 12 42 aMCC 
Note: Coordinates represent the cluster center-of-mass in the coordinate system of 
Talairach and Tournoux. 
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Figure 2. Pairwise ALE minimum conjunction maps. Areas of overlap  
are shown in red. 
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 Table 11. Cluster maxima for the negative affect and pain ALE minimum conjunction 
map. 
Volume (mm3) x y z ROI 

2384 0 10 37 aMCC 
320 -2 -6 40 pMCC 

Note: Coordinates represent the cluster center-of-mass in the coordinate system of 
Talairach and Tournoux. 
 
 
 Table 12. Cluster maxima for the negative affect and cognitive control ALE 
minimum conjunction map. 
Volume 
(mm3) x y z ROI 

2696 0 11 38 aMCC 
408 -3 32 22 aMCC/pgACC 

Note: Coordinates represent the cluster center-of-mass in the coordinate system of 
Talairach and Tournoux. 
 
 
 Table 13. Cluster maxima for the pain and cognitive control ALE minimum 
conjunction map. 
Volume 
(mm3) x y z ROI 

3696 0 9 39 aMCC 
296 -8 22 28 aMCC/pgACC 

Note: Coordinates represent the cluster center-of-mass in the coordinate system of 
Talairach and Tournoux. 
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 Figure 3. Activation foci maps. 
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 Discussion 
 
Comparison with prior meta-analyses 
There are a number of plausible explanations for why our CBMA yielded such a 
profoundly different result than the pioneering analysis of Bush and colleagues20. 
Owing to limitations of the imaging literature at that time, their semi-quantitative 
meta-analysis was necessarily based on a very small number of foci. Indeed, their 
analysis of ‘emotion’ was based on only 19 activation foci. As shown in Figure 4, the 
kinds of studies that were included were quite heterogeneous and most relied on 
samples of psychiatric patients (e.g., resting activity in depressed patients232, symptom 
provocation in anxious patients233, sadness induction in depressed and control 
participations234, perception of emotional words during the emotional Stroop task235). 
By contrast, our own meta-analysis of ‘negative affect’ was based on an order of 
magnitude more foci (k=117), all obtained from from studies in which it is probable 
that full-blown negative affect was elicited in unmedicated, psychiatrically healthy 
individuals (for additional details, see the Method and Results). That is, our analysis 
was both more comprehensive and more ‘process pure.’ Similar concerns apply to 
their analysis of deactivation foci (k=10; 4/10 from psychiatric samples). In contrast 
to Bush, the results of our meta-analysis of negative affect are in broad accord with 
other quantitative meta-analyses99,236,237 and semi-quantitative reviews238 implicating 
MCC in states of negative affect and, perhaps, other emotions. They are also 
consistent with a very recent meta-analysis examining three-way overlap between 
affect, pain, and working memory (complex working memory tasks are known to 
engage cognitive control processes) in aMCC239. As an aside, it is worth noting that 
there is, however, evidence suggesting that ACC (but not MCC) is differentially 
associated with major depression240-242 and the experience of sadness12 (consistent with 
our results, see Figure 3). 
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 Figure 4. The Bush et al. meta-analysis of affect-related activations. 
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Does anatomical overlap imply functional overlap? 
A general goal of neuroscience is to determine how the mind arises from the 
coordinated activity of the brain. This is generally achieved by identifying 
correlations between brain structure and function243. With the advent of whole-brain 
functional imaging techniques, there is increasing evidence that particular regions are 
activated by a number of seemingly disparate tasks (a ‘one-to-many’ mapping). 
Oftentimes, this anatomical overlap has been interpreted as evidence of mechanistic 
overlap, that is, of a common functional denominator. Price and Friston244 note that, 
“As results from functional neuroimaging studies accumulate, the overlap among the 
neural systems engaged by different tasks is becoming more apparent. In some cases, 
it might be possible to ascribe a region with a functional label that describes a process 
common to all the tasks that activate it” (p. 263). 

Evidence of anatomical overlap obtained using functional imaging techniques 
(or the meta-analysis of functional imaging foci) is widely conceptualized as 
provisional evidence that a macroscopic region (‘patch’ or ‘parcel’) of the brain, such 
as aMCC, makes a similar functional contribution to two or more tasks or domains244-

246. 
For instance, this logic has allowed a principled way of tentatively identifying 

the computational significance of the different regions activated by complex tasks. 
Used in this manner, evidence of overlap underlies claims that (i) mental imagery is 
grounded in perceptual circuitry (i.e., imagining a visual scene reflects the re-
activation of the same regions of visual cortex required to perceive such a scene)247-249, 
(ii) the maintenance of metrically-coded locations in working memory arises from the 
influence of spatial selective attention on the visual cortices250,251, and (iii) the capacity 
for experiencing empathy for others’ pain arises from a subset of circuitry involved in 
physically experiencing pain252-254. Paired with quantitative meta-analytic techniques, 
this logic has also proven helpful for fractionating the putative network of regions 
elicited by complex working memory tasks; in this case, by mapping the ‘complex 
working memory network’ onto smaller networks associated with ostensibly simpler 
cognitive control tasks (e.g., task switching, response selection)255. 

This logic has also played a prominent role in debates about domain-specific 
processing. For instance, are there regions of the brain (‘modules;’ e.g., the fusiform 
face area [FFA]) specialized for face processing256,257? Or is this a special case of a 
some more generic process (‘domain-general’ expertise with holistic or configural 
visual processing)258? Are there regions of the brain specialized for self-referential 
processing or does this reflect a more general role in evaluative and mnemonic 
processes that are confounded with self-referential processing259. In both debates, 
evidence of anatomical overlap (or absence of overlap) has served as a key piece of 
evidence for a common psychological process. 

Despite the widespread prevalence of this informal logic, it is clear that 
evidence of anatomical overlap obtained with conventional imaging techniques 
provides only circumstantial evidence for functional overlap. It could be that 
segregation is present at a finer grain of analysis257 or that the computational role 
played by a region varies as a function of task or functional connectivity, that is, the 
psychological or neural context in which processing occurs244,260,261. We briefly discuss 
these possibilities and summarize some strategies for more rigorously testing 
functional convergence in the main Review, particularly in the section reviewing 
Evidence of Functional Convergence and that describing Limitations of the Available 
Evidence. 
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It is worth emphasizing that each of these strategies, taken in isolation, 
presents its own complications or inferential limitations. To take just one example: 
naturally occurring lesions and insults may not be circumscribed to the region of 
interest, can interrupt fibers of passage, may differ in their transient and chronic 
effects (as compensatory mechanisms are engaged), are often accompaned by adverse 
side-effects upon affect or cognition, and are oftentimes studied using tasks quite 
different from those employed in basic science investigations. An equally damaging 
litany, differing only in the particulars, could probably be recited for any of the 
alternative strategies. But, taken in combination, we have reason to be optimistic 
about the prospects of characterizing the contribution of aMCC to negative affect and 
pain. 
 
Individuals characterized by more intense negative affect show amplified ERP 
indices of cognitive control 
Several ERP components thought to be generated in MCC are associated with 
cognitive conflict and control, particularly N2 and the error-related negativity 
(ERN)262. A number of studies have demonstrated that N2263-265 and ERN263,266-271 
amplitude is increased among individuals who are predisposed to more intense 
negative affect (a trait described by different investigators in terms of anxiety, 
avoidance, behavioral inhibition, harm or punishment sensitivity, negative affect, or 
neuroticism272) when performing prototypical cognitive control tasks (e.g., Eriksen 
flanker, Go/No-Go). Some evidence suggests that these effects may be exaggerated 
under conditions of greater incentive273 or uncertainty274 and that they generalize to 
clinical anxiety disorders275. A smaller body of work suggests that variations in acute 
(‘state’) negative affect are similarly predictive. For instance, individuals 
characterized by higher concentrations of the stress-sensitive hormone cortisol268 or a 
larger startle reflex in response to errors276 display a larger ERN. Likewise, 
individuals who report experiencing more state anxiety tend to show a larger N2264. A 
key caveat to such research is that it is correlative, leaving the direction of causation 
ambiguous. Nevertheless, it seems plausible that negative affect precipitates (or is 
isomorphic with) the increase in control-related MCC activity given that the induction 
of task-irrelevant negative affect amplifies the ERN277 and behavioral conflict-
adaptation effects278. 
 
Additional information about the figures 
Figure 1a: The rostral cingulate cortex was manually traced using a standardized 
protocol279 and rendered using SPAMalyze 
(http://brainimaging.waisman.wisc.edu/~oakes/spam/spam_frames.htm). 
 
Figure 1c: The macroscopic border between MCC and ACC was located at the 
coronal plane of the anterior commissure37. In the future, it should be possible to 
identify the subdivisions using probabilistic maps based on post mortem assessment 
of architectonic features280. 
 
Figure 3a: Zone borders are approximations based on a projection of published 
activation foci (many lying in the cingulate sulci) onto the mid-sagittal plane (see also 
Ref.26). The exact borders are likely subject to considerable individual differences. 
 
Figure 3b: Note that the borders of the ‘face’ regions were derived from an analysis 
of activation foci from studies of oculomotor and speech tasks. 
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Figure 3c: For additional information on recent developments in understanding facial 
expressions in nonhuman primates, see Refs285-289. 
 
Figure 3d: The fear and anger faces were posed in accordance with suggestions made 
in the Facial Action Coding System (FACS) manual290. Anger included movements of 
the corrugator supercilii and depressor supercilii (Action Unit [AU]4, ‘Brow 
lowerer’), levator palpebrae superioris (AU5, ‘Upper lid raiser’), and orbicularis 
oculi pars palpebralis (AU7, ‘Lid tightener’). Fear included movements of the 
frontalis pars medialis (AU1, ‘Inner brow raiser’) and pars lateralis (AU2, ‘Outer 
brow raiser’) and levator palpebrae superioris (AU5, ‘Upper lid raiser’) in addition to 
AU4 and AU7. The pain face was posed following Ref.291 and included movement of 
orbicularis oculi pars orbitalis (AU6, ‘Cheek raiser’) in addition to AU4. The 
putative ‘cognitive effort’ expression was derived from Darwin’s suggestion292,293 and 
more recent EMG studies (e.g., Ref.294). This incorporated AU1 and AU4 and, more 
speculatively, AU7. Please note that these faces were not intended to precisely 
reproduce the prototypical displays described by Ekman and colleagues295,296. For 
additional information, see http://face-and-
emotion.com/dataface/expression/muscles.jsp. Face figures were provided by James 
Coan (University of Virginia) and Cat Thrasher. 
 
Figure 4. Depicts a high-resolution structural MRI from a single rhesus macaque (for 
additional methodological details, see Ref.297). 
 
Figures 1-3: Were generated using a combination of AFNI 
(http://afni.nimh.nih.gov/afni), BrainMap (http://brainmap.org), FSL 
(http://www.fmrib.ox.ac.uk/fsl), MRIcron 
(http://www.cabiatl.com/mricro/mricron/index.html), and SPAMalyze 
(http://brainimaging.waisman.wisc.edu/~oakes/spam/spam_frames.htm). 
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